
COVID Modelling &  
Decision Support Engagement
A Flexible Data-Driven Framework for COVID-19 
Case Forecasting Deployed in a Developing-world 
Public Health Setting



COVID Modelling & Decision Support Engagement 2

COVID Modelling 
& Decision 
Support 
Engagement

A Flexible Data-Driven Framework  
for COVID-19 Case Forecasting 
Deployed in a Developing-world  
Public Health Setting

TABLE OF CONTENTS

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Introduction to Epidemiological 

Forecasting Models

Our Model

Areas of Epidemiological Modelling

Salient Contributions

SYSTEM AND PROCESS DESIGN . . . . . . . . . . . . . 10

Data Operations

Generic Modelling Framework

Reporting Results

MODELLING METHODOLOGY . . . . . . . . . . . . . . . . . . 12

Parameter Fitting with Sequential  

Model-Based Optimization (SMBO) 

Estimation of Forecast Uncertainty 

Data Spike Smoothing

Epidemiological Model Structure

Interpretability Of  

Epidemiological Models

Notions Of Identifiability

Non-Identifiability In  

Epidemiological Models

EMPIRICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

INSIGHTS ACQUIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CONCLUSIONS AND ENSUING WORK . . . . . 22

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . 23



COVID Modelling & Decision Support Engagement 3

Why Did We Make This Guide?
The coronavirus disease (COVID-19) has resulted in a worldwide pandemic. 
One of the worst aspects of the devastation caused by the pandemic is the 
severe toll it has extracted on public health systems. This is especially true in 
the developing world, where resources are few, information flow pipelines are 
weak, medical care is spotty and unevenly spread, and the ability to contain 
infection spread is limited by dense populations and poor compliance.

As an Institute committed to serving the underserved through the 
development and use of AI technologies, we engaged with Mumbai city 
government and the state government of Jharkhand to aid in pandemic 
response through a combination of predictive modelling and data analytics. 

The primary objectives were as follows: 
a. to provide accurate estimates of future case loads via epidemiological 

models that are simple enough to accommodate the type of data that 
was collected on the ground, yet complex enough to reasonably capture 
the infection dynamics

b. to develop and implement analytics tools to guide testing and 
interventions in areas where they would have the most impact.

This guide summarises the work we did from a technical and public health 
perspective, with pointers to resources that may prove beneficial to 
various stakeholders.

Who Should Read This Guide?
This practical guide has been designed for data science practitioners and 
epidemiologists who may utilise our methodology and codebase in their 
respective research areas.

Moreover, public health professionals and government officials may glean 
from the data pipelines, modelling framework and analytics capabilities to 
forecast disease spread in communities.
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Glossary

Age Stratification
Age stratification is the process of splitting a population 
by their age group, anticipating that each group will be 
analysed or modelled separately.

Agent-Based Models
Agent-based epidemiological models model every 
potential disease carrier as a separate individual or 
agent, along with the interactions between individuals 
and possibly their mobility patterns. By contrast, 
compartmental models do not operate at an individual 
level but rather at a population level.

Basic Reproduction Number or R₀
In epidemiology, in a given population of susceptible 
people, the basic reproduction number R0 is the number 
of people in the population who will be directly infected 
by one infected person. It is commonly understood 
that if R0 > 1, the infection will spread throughout the 
population, while if R0 < 1, the infection will eventually die 
out. The specific value of R0 for a certain disease within 
a certain population plays a crucial role in determining 
the proportion of people who need to be immunised in 
order to eradicate the disease.

Bayesian Model Averaging
Bayesian Model Averaging (BMA) involves making 
parameter inferences on the basis of all models within 
a class of models. The parameter(s) to be estimated is 
computed as a weighted average over all models in the 
class using the posterior distribution of the parameter. 
This approach typically results in robust estimates and 
explicitly takes into account model uncertainty.

Compartmental Models
Compartmental epidemiological models are models for 
the spread of a pandemic in which each compartment 
corresponds to a group of people or a population in 
a specific disease state. Individuals move between 
compartments as they transition from one disease 
state to another.

Confidence Intervals
Confidence intervals arise in situations where a 
mathematical variable is described by a probability 
distribution. We refer to the value of the variable  

 
as lying within an interval of values with a certain 
probability, or “confidence”. 

Convex Function
A mathematical function is termed convex if the line 
segment between any two points on the graph of a 
function does not lie below the graph between the two 
points. It is strictly convex if the line segment always lies 
above the graph. Functions that are strictly convex over 
a domain are important because they have a single 
minimum value in that domain.

Data Smoothing
Data smoothing is a mathematical or computational 
procedure to smoothen out kinks in the data. This 
procedure is typically used in the context of time  
series data.

Ensembles
An ensemble of models is a set of models of the same type 
that carry out the same task, possibly with each model 
having a different set of parameter values. An ensemble 
of models taken together is often more accurate than any 
one model. For example, in the context of epidemiological 
models, an ensemble could be a family of compartmental 
models such that each model in the family has a different 
set of parameters. Forecasts from the different models in 
the ensemble are then combined in various ways to form 
a consensus forecast of the ensemble. A common way of 
combining these forecasts is to do a weighted average 
of the forecasts from each model in the ensemble. This is 
referred to as a weighted ensemble. 

Epidemiology
Epidemiology is the study of the causes and 
distribution of health states across individuals in a 
population. It also involves the application of this study 
to the control of health problems. An epidemiological 
model, as used in this playbook, is a mathematical 
model that describes dynamical transitions between 
various health states in a population. 

Fitting Durations
These are time periods, specified as a start and end 
date, over which epidemiological model parameters are 
fit to data.
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IHME CurveFit Model
This is a model developed at the Institute for Health 
Metrics and Evaluation. The model consists of a specific 
parameterized function that is fit to COVID-19 case 
count data.

Incubation Period
The incubation period for an infection is the time 
elapsed between being infected by a disease and 
showing symptoms of the disease. In the context of 
epidemiological modelling, it is often assumed to be the 
time from infection to hospitalisation or isolation.

Identifiability
A parameter of an epidemiological model is said to be 
identifiable if its value can be inferred from data.

Interpretability
A parameter of an epidemiological model is said to be 
interpretable if its values can be assigned meaning in 
terms of epidemic spread.

Loss Function
A loss function is a mathematical function that 
measures the error between the estimated value of a 
variable and its true value.

Markov Chain Monte–Carlo (MCMC)
MCMC is a computational method for sampling from 
a distribution without knowing all of the distribution’s 
mathematical properties. It is implemented by 
sequentially sampling values from proposal distributions 
that are easy to sample from, and then accepting or 
rejecting these samples with a probability that depends 
on the original distribution. The sequential samples thus 
obtained ultimately converge to samples from the original 
distribution. The name MCMC combines two properties: 
Monte–Carlo and Markov chain. The set of sequential 
random variables form a Markov chain; Monte–Carlo is 
the practice of estimating the properties of a distribution 
by examining random samples from the distribution.

Mean Absolute Percent Error (MAPE)
MAPE is defined as the absolute difference between 
true and estimated value of a variable, expressed as a 
percentage of the true value.

Model-Agnostic Evaluation
This is a method or class of methods for evaluating 
the predictions of a model in a manner that does not 
depend on the details of the specific model but only on 
the specific prediction that is being evaluated.

Quantiles
A quantile, as referring to a data distribution, refers to a 
cutoff value that represents a range of values in a data 
distribution that lie below the cutoff value. The cutoff 
value is specified based on the probability that the data 
lies below that value. For example, the 0.5-quantile is a 
value such that half of all the data lies below it; thus, the 
0.5-quantile is the median value of the data.

ReichLab Forecasting Hub
The ReichLab Forecasting Hub is a COVID-19 forecast 
resource that serves as a central repository of 
COVID-19 case forecasts and predictions from over 
50 international research groups. It was founded in 
2020 by the lab of Nicholas Reich at the University of 
Massachusetts, Amherst.

SEIR Model
The SEIR model is a compartmental epidemiological 
model describing transitions between disease states 
or compartments corresponding to susceptible (S), 
exposed (E—infected but not infectious), infectious (I) 
and removed (R) population cohorts. Individuals move 
between these compartments in sequence as they 
become exposed, infected and infectious during disease 
progression until recovery. 

Sequential Model-Based Optimization (SMBO)
SMBO is a global hyperparameter optimization method. 
It iterates between fitting and interpolation model to an 
already sampled set of hyperparameters, and using the 
model to decide on the next set of hyperparameters to 
investigate. It is one of a class of black box algorithms that 
are used when objective functions are difficult to evaluate.

Glossary
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TOPICS COVERED IN THIS SECTION

Introduction to Epidemiological Forecasting Models

Our Model

Areas of Epidemiological Modelling

Salient Contributions

Introduction to Epidemiological Forecasting Models
Coronavirus disease (COVID-19) was declared a public health emergency 
of international concern in January 2020 by the World Health Organization 
(WHO). Globally, as of December 2021, there have been over 250 million 
confirmed cases of COVID-19, including over 5 million deaths, reported to 
the WHO. The nature of the crisis is unprecedented. The long-term effects 
on human capital, productivity and behaviour may be long-lasting in addition 
to the repeated health and economic shocks. These effects are even more 
pronounced in the developing world.

During the course of the pandemic, governments across the world have 
worked assiduously to limit the human cost and economic disruption as well 
as adjust preventive policies to mitigate the disease spread. It is the most 
consequential set of public policy and mass behaviour change actions most 
of us have seen in our lifetimes. Robust policy development and planning 
necessitates pandemic models that can accurately predict the number of 
COVID-19 cases and deaths sufficiently far into the future, as such models 
would allow governmental policy makers to examine the effects of different 
preventive policies. 

The ongoing COVID-19 pandemic has spurred intense interest in 
epidemiological forecasting models. The need for robust pandemic 
response and planning has been especially pressing in dense populations 
across the developing world, with their limited health resource availability, 
limited data to anticipate outbreaks, and long lead times for addressing 
shortfalls. It is paramount to ensure adequate capacity availability of critical 
health care resources to reduce mortality. There is a need for forecasting 

> 250 million
confirmed cases of  
COVID-19

> 5 million
confirmed deaths due  
to COVID-19

AN UNPRECEDENTED CRISIS

Globally, as of December 2021, there have 
been over 250 million confirmed cases of 
COVID-19, including over 5 million deaths, 
reported to the WHO.

01

Background
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reported infections at a local level to inform capacity planning, model the 
effects of policy changes and prepare for potential scenarios. We deployed 
a forecasting framework that was used in Mumbai, India, one of the 
most densely populated cities in the world, as well as in other resource-
constrained regions such as the state of Jharkhand, India, during the first 
Covid infection wave. The partners for data and usage of the solution include 
the Brihanmumbai Municipal Corporation (BMC) and the Integrated Disease 
Surveillance Programme, respectively, at the two locations.

Our Model
Forecasting infection case counts and estimating accurate epidemiological 
parameters are critical components of managing the response to 
a pandemic. We have devised a flexible modelling framework and 
demonstrated its value for epidemic forecasting taking into consideration 
the kind of case count aggregate data that is typically available in a 
constrained public health setting. The deployed system was used to 
drive decision making and planning with good accuracy (worst case 
Mean Absolute Percent Error < 20%) during the COVID-19 pandemic in 
Mumbai and Jharkhand, India. Our framework allows rapid forecasting 
with uncertainty estimates and is extensible to other model families and 
to different types of  loss or error functions. Furthermore, it enables the 
optimisation of hyperparameters such as fitting durations and ensemble 
weights. We motivated the choice of the specific compartmental model 
used through identifiability of the underlying parameters in the light of the 
data constraints.

Areas of Epidemiological Modelling
An epidemiological modelling framework consists of four important 
components. They are as follows:

FORECASTING

The COVID-19 pandemic and the concerned global forecasting challenges 
have prompted new research on modelling infectious disease spread. There 
are three broad classes of models.

Compartmental models assume that individuals in a population at any given 
time are assigned to one of several states known as compartments. As the 
disease progresses, individuals transition between these compartments. 
Over the last year, variants of the SEIR compartmental model have been 
widely used to study the healthcare burden brought about by the pandemic. 
Many of these models also incorporate aspects such as age-stratification, 
asymptomatic transmission and effects of social distancing measures.

Agent-based models simulate interactions and disease stage transitions of 
individual agents or disease carriers.

THE NEED FOR 
FORECASTING 
MODELS
The ongoing COVID-19 
pandemic has spurred 
an intense interest in 
epidemiological forecasting 
models. The need for robust 
pandemic response and 
planning has been especially 
pressing in dense populations 
across the developing world, 
with their limited health 
resource availability, limited 
data to anticipate outbreaks, 
and long lead times for 
addressing shortfalls. It is 
paramount to ensure the 
availability of an adequate 
capacity of critical health care 
resources to reduce mortality.

BACKGROUND SOLUTION 
FRAMEWORK

MODELLING 
METHODOLOGY

EMPIRICAL 
RESULTS

INSIGHTS 
ACQUIRED
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Curve-fitting models fit parameterised curves to data. The examples include 
the exponential growth model and the IHME CurveFit model.

In recent times, there has been an increased emphasis on the practical 
aspects of model fitting like choice of training duration and identifiability 
issues. Model-agnostic evaluation of forecasts is another related area of 
interest. Whilst our deployment was primarily based on compartmental 
models, the techniques we used and developed are largely agnostic to 
model class and choice of loss function.

PARAMETER ESTIMATION (WITH UNCERTAINTY)

Compartmental epidemiological models are highly interpretable in terms 
of their model parameters, which carry meaning independent of the 
specific forecasts. A case in point is the so-called R0 parameter that roughly 
measures the tendency of a disease to spread within a population. In addition 
to enabling high quality estimates of forecasts, it is thus incumbent upon a 
sound epidemiological modelling framework to provide robust estimates of 
the underlying parameters and the uncertainties in these estimates. 

MODELLING WITH DATA LIMITATIONS

Epidemiological modelling in the developing world is beset by the 
dearth of data and quality issues. Multiple studies have concentrated on 
understanding transmission dynamics in such limited data settings. We 
too faced some of these challenges,  and attempted to resolve them via 
appropriate model choices and data preprocessing.

PUBLIC HEALTH DEPLOYMENT

The practical use of epidemiological models in public health response 
demands a holistic view of government priorities, policy levers and processes. 
The initiatives in economic epidemiology are targeted towards supporting 
decision-making related to interventions and policy choices. Currently, 
several organisations share automated COVID case forecasts with relevant 
public health authorities. However, the forecasts are not always customised 
for decision-making. Our deployment involved a two-way partnership with 
the government thereby providing precise capacity planning guidance and 
insights into the pandemic dynamics per requirements.

BACKGROUND SOLUTION 
FRAMEWORK

MODELLING 
METHODOLOGY

EMPIRICAL 
RESULTS

INSIGHTS 
ACQUIRED

In recent times, 
there has been 
an increased 
emphasis on the 
practical aspects 
of model fitting like 
choice of training 
duration and 
identifiability issues.
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Salient Contributions 
Our framework employs aggregate case count data that is collected by 
government officials from health facilities. It outputs predicted case counts 
that are utilised by public health authorities for subsequent planning of 
personnel and supplies. Our work sheds light on the cardinal elements of a 
forecasting framework and contributes to the following areas.

SYSTEM AND PROCESS DESIGN

This refers to a practical, modular and extensible learning-based epidemic 
case forecasting system that is customisable to locales and application 
scenarios. The system consists of modules for data ingestion, preprocessing 
and exploratory analysis, model fitting, scenario-conditioned forecasting 
and application-specific report generation.

MODELLING METHODOLOGY

This refers to techniques for model and loss-agnostic estimation of 
parameters via sequential model based optimisation (SMBO). Combining 
SMBO sampling with Bayesian model averaging allows fast approximate 
quantification of forecast uncertainty. Through the research, we have 
demonstrated that this method is empirically comparable to a more 
rigorous Markov Chain Monte Carlo (MCMC) approach but computationally 
faster. Additionally, we have developed smoothing methods to handle data 
issues arising from delays in reporting.

EPIDEMIOLOGICAL MODEL CHOICE

We have presented arguments for constraints of interpretability warranting 
a simple variant of the SEIR compartmental model especially when only 
confirmed, active, recovered and deceased case counts are observed.

INTERPRETABILITY AND IDENTIFIABILITY

We developed practical notions of identifiability of epidemiological 
parameters, expressed in terms of the underlying parameter uncertainty, in 
the specific context of SEIR type models.

EMPIRICAL RESULTS

This refers to extensive empirical analyses detailing the optimisation of 
relevant hyperparameters, field predictive performance for the city of 
Mumbai as well as comparison with other state-of-the-art models hosted by 
ReichLab in the USA.

DEPLOYMENT LESSONS

We summarise the critical lessons from deployment of our modelling 
framework in Mumbai and Jharkhand. The audience for this work  
consists of applied researchers working on practical forecasting and  
public health officials. █

BACKGROUND SOLUTION 
FRAMEWORK

MODELLING 
METHODOLOGY

EMPIRICAL 
RESULTS

INSIGHTS 
ACQUIRED



COVID Modelling & Decision Support Engagement 10

02

System and  
Process Design

The end-to-end epidemic forecasting system developed consisted of the 
three major components outlined below. This system generically applies to 
any data-driven public health response to pandemics.

TOPICS COVERED IN THIS SECTION

Data Operations

Generic Modelling Framework

Reporting Results

CITY FACILITIES

Hospital

COVID Care Center

Test Labs

Planning Horizon 
& Criteria

Staffing and 
Supplies Map

Upcoming  
policy/events

CITY HUB 
CONSOLIDATION

EXPERT REVIEW

SCENARIO 
CONDITIONED 
FORECASTING

DATA QUALITY 
CHECKS & 
MONITORING

SECURE CLOUD

DATALOADER

Official

Covid19India

JHU

OUTPUT

Government

Reich Lab

Academic

MODEL

SIRD

SEIARD

Curve Fit

LEARNER

HyperOpt

MCMC

Grid Search

LOSS

RMSE

RMSLE

MAPE

PUBLISHER

Weights & Biases

MLFlow

Local Logs

DATA OPERATIONS

MODELLING FRAMEWORK

REPORT GENERATION

City Liaison

COVID
Report

Figure 1: COVID forecasting framework. The three-
phase pipeline consists of a) data operations: working 
with government officials to consolidate and store 
data collected from various sources throughout the 
city, b) a modular modelling framework for fitting and 
forecasting, and c) report generation of customized 
forecasts for clients. The specific components for 
deployment with government partners are highlighted 
in orange and connected by a green line delineating 
the workflow.
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DESIGN COMPONENTS NOTABLE ATTRIBUTES

Data Operations • Standardised data schema for aggregate case counts

• Data validation at point-of-ingestion, including de-duplication

• Data anonymization, quality checks

• Visualisations to manually monitor anomalies

• SQL-compliant database exposed to the modelling pipeline

Generic Modelling 
Framework

• Extensible, scalable, suitable for rapid experimentation in multivariate 
time series forecasting

• Five principal modules: Data loader, Model, Learner,  
Loss function, Publisher

Reporting Results • Types of model outputs: time-series forecast format, planning reports, 
model pushes for external publication

• Three projected scenarios reported, reflecting parameter uncertainties: 
low case scenario, high case scenario, planning scenario

• Estimation of future facility-level demand for medical staff and equipment

BACKGROUND SOLUTION 
FRAMEWORK

MODELLING 
METHODOLOGY

EMPIRICAL 
RESULTS

INSIGHTS 
ACQUIRED
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03

Modelling 
Methodology

The ultimate aim of our modelling framework is twofold: 
a. to provide reasonable estimates of future case counts, and 
b. to estimate the underlying parameters of the epidemiological model, 

which carry independent meaning and interpretation that is useful for 
public health decision making. 

In both these cases, it is also important to provide uncertainties associated 
with a certain confidence level, since these uncertainties too must be 
potentially factored into decision making. The framework we currently have 
(open-sourced here) is general enough to be adapted to any compartmental 
model. Its technical components are the following.

Data Cleaning
A common issue with case count aggregate data is delays in reporting of 
infected cases, recoveries and deaths. The effect of these delays is that 
the reported count on any given day always lags behind the actual count. 
Usually, after many such days, the missing case counts from past days 
are consolidated and reported on a single day, resulting in a large spike in 
reported data. Because the spike results from consolidated reporting of 
past data, it is artificial and needs to be smoothed out before the data is fed 
into the modelling pipeline. This is the primary data cleaning operation that 

TOPICS COVERED IN THIS SECTION

Parameter Fitting with Sequential Model-Based Optimization (SMBO) 

Estimation of Forecast Uncertainty 

Data Spike Smoothing

Epidemiological Model Structure

Interpretability Of Epidemiological Models

Notions Of Identifiability

Non-Identifiability In Epidemiological Models
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needs to be performed, although there may be instances of other types of 
incorrectly reported data or missing values due to manual errors. 

We developed various techniques for data smoothing by redistributing case 
counts on the “spike” day to previous days in different ways. Our numerical 
experiments indicated that a “proportional count” method of smoothening, 
in which the number of case counts attributed to a given day was made 
proportional to the actual reported count on that day, turned out to be the 
most faithful method for reproducing true case counts.

Parameter Fitting
Historical case count data, aggregated at the city or district level, is used to 
estimate epidemiological parameters such as the disease incubation time, 
the basic reproduction number, and so on. Technically, these parameters 
are estimated through an iterative sequential sampling process called 
Sequential Model Based Optimization (SMBO). In each iteration of this 
process, the estimated parameters provide a better fit to the data. While in 
principle the fitting process need only be done once to estimate the relevant 
parameters, in reality the parameters keep changing as a consequence of 
varying lockdown measures, population migration, and the nature of the 
virus variant. This necessitates repeated fitting as more data comes in to 
ensure that any parameter values used for prediction of future case counts 
are based on fitting to the most recent data.

Forecast Uncertainty Estimation
Uncertainties in case count forecasts are a consequence of uncertainties 
in the underlying epidemiological parameters, which are themselves 
estimated through the fitting procedure described above. In principle, if the 
probability distribution of the parameters given historical case count data 
were known, then that distribution can be used to estimate uncertainties 
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Figure 2: Performance of smoothing 
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and confidence intervals for the parameters, and hence for the forecasted 
values. In practice, however, estimating this distribution is difficult and 
computationally expensive. It can be done through a Markov Chain Monte 
Carlo (MCMC) procedure, which is also a repeated sampling procedure. 

We developed a fast, approximate procedure for computing uncertainties 
by sampling from the empirical distribution corresponding to the sequential 
samples generated by SMBO. These samples are then exponentially down-
weighted by the value of the loss function for these samples. In other words, 
samples with small values of the loss (lower error) get much higher weights 
than samples with large values of the loss (higher error), and these weights 
are used to compute a weighted mean parameter value and a weighted 
variance in parameter values. This approximate procedure of computing 
uncertainty or variability in parameter values is termed Approximate 
Bayesian Model Averaging (ABMA).

Furthermore, the ABMA procedure also entails using the SMBO parameter 
samples to compute forecast trajectories and taking the same weighted 
averages and variances of these trajectories to compute uncertainties in 
forecasts as well. A similar procedure is used to generate forecast quantiles 
corresponding to pre-specified confidence levels.

Epidemiological Model Choice
The specific choice of epidemiological model in a given situation naturally 
depends on the type of disease and the nature of the pathogen causing it, 
but it also depends on a number of practical factors governed by answers to 
the following questions: 

a. Is this the simplest possible model that can reasonably faithfully capture 
the disease dynamics (i.e., is the model expressive enough?)?

b. What is the kind of data that is available in order to estimate model 
parameters? Complex models with many parameters are often not 
identifiable (an issue we discuss below) because there simply isn’t 
enough variety in the available data to drive parameter learnability. 

c. Are the parameters readily interpretable so that the disease dynamics 
can be understood? 

d. Is the model generalizable to more complex scenarios by incorporation 
of additional information as it becomes available?

For the specific case of modelling the COVID-19 pandemic in India, we chose 
the simplest model compatible with the available data that is expressive 
enough to capture the disease dynamics. Curve-fit models are not expressive 
since they do not typically take into account the decreasing susceptibility as 
the pandemic progresses; when they do, the underlying parameters are not 
readily interpretable. Agent-based models are typically over-parametrized 
and complex. A low-complexity compartmental model that we found to 

BACKGROUND SOLUTION 
FRAMEWORK

MODELLING 
METHODOLOGY

EMPIRICAL 
RESULTS

INSIGHTS 
ACQUIRED

For the specific 
case of modelling 
the COVID-19 
pandemic in India, 
we chose the 
simplest model 
compatible with 
the available data 
that is expressive 
enough to capture 
the disease 
dynamics.
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be expressive enough, yet generalizable enough to allow for modelling 
scenarios with changes in testing and lockdown policies, was the SEIARD 
model, comprising compartments corresponding to Susceptible (S), Exposed 
(E), Infectious (I), Active (A), Recovered (R), and Dead (D) cases.

Identifiability And Interpretability
The SEIARD model, like all compartmental models, has a number of 
epidemiological parameters that need to be specified in order to generate 
forecasts. These include the transmission rate, the infectious time period 
(the product of these is the basic reproduction number R0), the incubation 
time period, and so on. In addition, compartments like E and I are latent, 
in the sense that the actual populations in these compartments are never 
observed (it is never known, for example, how many people are actually 
exposed to the pathogen, even though everyone may be susceptible). 
Therefore the initial values of the population in these compartments are 
also effectively parameters to be estimated. However, in practice, many of 
these parameters cannot be estimated accurately from case count data 
alone. These parameters are thus considered (in a sense clarified below) 
non-identifiable. Their values can only be fixed by additional knowledge of 
the spread of the pandemic that is not captured in aggregate case count 
data. Patient linelist data, for example, can be used to better pin down the 
incubation time period and render it effectively identifiable.

Note that identifiability of parameters is key to their interpretability. Without 
being able to estimate parameter values with reasonable certainty, we 
cannot interpret or assign meaning to their values. Furthermore, large 
uncertainty in parameter values leads to reduced accuracy on long-time 
forecasts, as illustrated in the figure below, where the forecasting errors 
between a non-identifiable model and its reparameterized version (later 
shown to be identifiable) are compared.

Figure 3: SEIARD Model Structure. 
Individuals transition between states 
of disease progression: Susceptible (S), 
Exposed (E), Infectious (I), Recovered (R), 
and Deceased (D). Active cases are split 
between Arecov and Afatal.
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There are many factors that lead to non-identifiability in epidemiological 
models, including the details of the model dynamics, the loss function and 
method used to fit parameters, and the quality and quantity of data available. 
It is common to classify identifiability into two broad classes:

Structural identifiability, which is purely dependent on the nature of 
the compartmental model and the underlying mathematical equations 
describing the dynamics of transitions between compartments, and

Practical identifiability, which is a less precise notion, but depends on 
the details of the parameter fitting process. This is made quantitative by 
computing confidence intervals for the parameter in questions. Thus we 
may say that, given the data and fitting process, a certain parameter can be 
estimated to within a certain range (corresponding to the interval) with a 
certain level of confidence. 

Note that structural identifiability is a prerequisite for practical identifiability: 
if a parameter is not structurally identifiable, it cannot be estimated even in 
a practical context. However, there are parameters that may be structurally 
identifiable in a rigorous sense but are practically very difficult to estimate 
because of paucity of data or a quirk in the fitting process.

In the specific case of the SEIARD model, the initial active cases are split 
between those that eventually recover and those that eventually die. This 
split is structurally non-identifiable: aggregate case count data cannot 
be used to separately estimate these two types of active cases. A large 
number of eventually fatal cases, with a long time to mortality, would be 
indistinguishable (in model fitting) from a small number of eventually fatal 
cases with short time to mortality. Moreover, the latent compartments also 
cannot be estimated from case count data alone. 

Our contribution to identifiability analysis consisted of making precise a new, 
intermediate type of identifiability, which we call statistical identifiability, 
a situation in which the loss function used for fitting parameters to data is 
convex in nature, thus possessing a unique minimum value. Note that this 
concept is different from structural identifiability because it depends on the 
choice of loss functions, and also different from the concept of practical 
identifiability since it does not depend on the width of the minimum of the 
loss function, only on the shape itself.
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In the SEIARD model, structural non-identifiability manifests as statistical 
non-identifiability of the main parameters. However, if parameters like 
the incubation period, the infectious period, and the time to death can 
be estimated from patient linelists, the model becomes structurally 
and statistically identifiable. Note that practical identifiability is still not 
guaranteed since a large amount of data may be required to pin the 
parameters down to confidence intervals that are narrow enough for the 
parameter values to be interpretable and meaningful. █

STRUCTURAL STATISTICAL PRACTICAL

Model Form ✓ ✓ ✓

Loss function ✓ ✓

Observation interval ✓ ✓

Noisy data ✓

Fitting method ✓

Table 1: Notions of identifiability
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Results
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Performance of our framework on Mumbai city forecasts

Comparison with SOTA Models

The value of our framework was demonstrated by the following:

• Empirical results validating choices of hyperparameters, uncertainty 
estimation, and data preprocessing

• Field performance and impact of the deployed system in Mumbai, 
including translation of case forecasts to capacity requirements in 
hospitals

• Empirical comparison of our approach with other state-of-the-art 
(SOTA) models on COVID-19 case data from the USA

Performance of our framework on Mumbai city forecasts
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Figure 4: Performance of ABMA on Predicting Mumbai Caseload. Predicted and ground 
truth case counts for Mumbai city across compartments and phases of the pandemic. Here, the 
parameter fitting period is Tθ= 30 days and the fitting period for the hyperparameter α is 𝑇Tα= 3 
days (see Supplement). Forecasts are shown 30 days beyond the end of the Tα fitting period. All 
dates refer to the year 2020.
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The ABMA framework was used to provide actionable insights for the city 
of Mumbai, India from May 2020 to October 2020, as well as in the state of 
Jharkhand, India. The figure and table above confirm the high accuracy and 
interpretability of our methodology across different phases of the pandemic. 
Recommendations made using this forecasting framework helped increase 
Mumbai’s ICU bed capacity by over 1200 units, with 95% utilisation of ICUs 
when hospitalisations peaked. Moreover, over the deployment period, 
no absolute shortfall of critical health care resources became apparent, 
demonstrating the value of recommendations.

Comparison with SOTA Models

We used the ReichLab forecasting hub for US states as a basis for comparing 
the performance of our forecasting framework with other methods, since 
no similar forecasting hub was available in India where models could 
transparently be compared. The source of data for the forecasts is the 
John Hopkins University CSSE data. We evaluated our method solely on 
regions where all four primary case counts were available (44 states plus 
Washington D.C.). The basis for comparison with other models is the MAPE 
value on deceased case counts. We found that 26 models submitted to 
ReichLab had submissions for at least 45 regions over the duration studied, 
with a range of median MAPE values between 1.21% and 4.26%. Our forecasts 
have low error and compare well to other models without the need for any 
special customisation of hyperparameters or fitting method. █

RANK MODEL MEDIAN MAPE (%)

1 UMass-MechBayes 1.21

2 Karlen-pypm 1.32

3 SteveMcConnel-CovidComplete 1.33

4 ABMA 1.38

5 YYG-ParamSearch 1.44

6 UCLA-SuEIR 1.49

7 PSE-DRAFT 1.65

8 DDS-NBDS 1.70

9 CEID-Walk 1.77

10 COVIDhub-baseline 1.71

PHASE PARAMETER VALUES COMPARTMENT MAPE LOSS (%)

R0 Tinf Tinc Trecov Tfatal Pfatal Eactive_ratio Iactive_ratio C A R D

Early 1.18 3.59 4.29 30.14 14.70 0.07 0.95 0.12 6.91 11.33 12.91 3.78

Middle 0.83 3.86 4.17 19.32 24.32 0.05 0.30 0.18 3.10 9.04 2.39 1.05

Late 0.81 3.72 4.42 11.75 11.87 0.02 0.35 0.37 1.20 17.54 2.39 1.43

Table 2: Quantitative Performance of 
ABMA on Mumbai. Ensemble mean (ABMA) 
parameters, and test MAPE loss (%) for each 
compartment of the ABMA forecasts. Note 
that the ABMA forecast is the mean forecast, 
not the forecast of the mean parameters.

Table 3: Performance of top 10 Reichlab 
models submitting forecasts for at least 
45 regions on cumulative death counts. 
All models were fitted on data from 18 Aug 
to 19 Sept 2020. Based on hyperparameter 
optimisation for Mumbai, we chose 𝑇Tθ= 30, 
Tα= 3. Model forecasts four weeks into the 
future starting 20 Sept 2020, aggregated 
every week, were evaluated by computing 
their MAPE values for every region, and then 
taking the median value across all regions 
(reported here).
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05

Insights 
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TOPICS COVERED IN THIS SECTION

Insights We Acquired From Our Research

Lessons for Deployment

Dynamic data entails humans in the loop: Data collection and management 
activities during a pandemic are adversely impacted due to severe demands 
on public health authorities, leading to data discrepancies.

The data-related challenges prompted us to rely heavily on humans in the 
loop for tracking evolving data definitions and carrying out semi-automated 
quality checks. Additionally, data versioning and pre-processing prior to 
modelling were essential.

Model interpretability and identifiability is paramount: Our choice of 
the SEIARD model over other model families was motivated by planning 
needs and policy choices. Hence, the parameters had to be interpretable, 
independently verifiable where possible, and robustly estimable from the 
available data.

Application needs should dictate modelling choices: We focused on 
capacity planning, which impacted policies on capacity that took about 
a month to implement. We therefore customised our model fitting with 
loss computed over this time horizon. Furthermore, we adapted models in 
accordance with the information provided on upcoming policy changes and 
events (for instance, festivals) to generate accurate forecasts. 

Insights must be actionable: Model insights had to be translated to concrete 
action guidance to enable smooth planning. Uncertainty estimation allowed 
us to provide three relevant scenarios which included a planning scenario, 
a high case scenario, and a low case scenario. Localised testing levels, 
evolving severity of cases, and sero-surveillance information to comprehend 
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the state of the pandemic were pivotal factors informing the selection of 
planning scenarios.

Capacity gaps at the last mile are hard to anticipate: We recognise that 
while the use of our framework mitigated capacity shortfalls, the ability of 
a critical patient to access these resources is mediated by other factors. 
These include access to information on the availability of beds, local 
emergency transportation, the ability to pay for treatment, and other equity 
considerations, all of which need to be addressed within a larger framework 
of pandemic response. █
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Conclusions And Ensuing Work
We have presented a flexible modelling framework and demonstrated 
its value for epidemic forecasting utilising the case count aggregate data 
available in a constrained public health setting. The deployed system was 
used to drive decision making and planning with good accuracy (worst case 
MAPE < 20%) during the COVID-19 pandemic in Mumbai and Jharkhand 
respectively. 

Our framework enables rapid forecasting with uncertainty estimates 
and is extensible to other model families and to different loss functions. 
Additionally, it allows the optimisation of hyper parameters such as 
fitting durations and ensemble weights. We motivated the choice of the 
specific compartmental model opted for via identifiability of the underlying 
parameters given the data constraints. Empirical comparison of our 
methods with other advanced models in the ReichLab hub on real-world 
data in the USA further points to their efficacy.

We also clarified notions of identifiability of parameters, specifically the 
interplay between structural identifiability, statistical identifiability, and 
practical identifiability intervals. We present these ideas and empirical 
results in the specific context of the SEIARD compartmental model. In 
the future, we plan to explore connections between different types of 
identifiability and empirically analyse the identifiability of multiple SEIR 
variants on real and synthetic data. This framework may be applied to the 
estimation of case burden in other infectious diseases such as Tuberculosis 
which are widespread across the developing world.
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