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ABSTRACT
During an epidemic, accurate long term forecasts are crucial for
decision-makers to adopt appropriate policies and to prevent medi-
cal resources from being overwhelmed. This came to the forefront
during the covid-19 pandemic, during which there were numerous
efforts to predict the number of new infections. Various classes of
models were employed for forecasting including compartmental
models and curve-fitting approaches. Curve fitting models often
have accurate short term forecasts. Their parameters, however, can
be difficult to associate with actual disease dynamics. Compartmen-
tal models take these dynamics into account, allowing for more
flexible and interpretable models that facilitate qualitative compari-
son of scenarios. This paper proposes a method of strengthening
the forecasts from compartmental models by using short term pre-
dictions from a curve fitting approach as synthetic data. We discuss
the method of fitting this hybrid model in a generalized manner
without reliance on region specific data, making this approach easy
to adapt. The model is compared to a standard approach; differ-
ences in performance are analyzed for a diverse set of covid-19
case counts.

KEYWORDS
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1 INTRODUCTION
Infectious disease modeling plays an important role in epidemiol-
ogy and public health decision making. This was apparent during
the spread of covid-19, where sweeping decisions were made based
on predictions from forecasting models. A challenge for modelers
throughout the epidemic was providing estimates that were both
sound and actionable: forecasts that were accurate, their parame-
ters interpretable, and their horizons sufficient for effective policy
implementation. This paper focuses on two techniques that were
widely used. By themselves, the techniques excelled at subsets of
those desirables. This work outlines a method for combining the
techniques that succeeds at all three.

Statistical and compartmental models are popular methods for
forecasting epidemics. Statistical models such as autoregressive
methods and nonlinear regression attempt to model observed as-
pects of the disease time series. These models can be quite accurate
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in the short term where it is sufficient to extend a pattern of re-
cently observed disease growth into the immediate future—a week
or two, for example. Accurate longer term forecasts can be difficult
to achieve because their functional forms do not generally take dis-
ease dynamics into account. This also makes it difficult to establish
a correspondence between their parameters and concepts inherent
to the virus or the population dynamics of the host.

Compartmental models model rates at which the virus moves
through a host population. They are typically set up as systems of
differential equations, capable of modeling nonlinear feedback char-
acteristics of actual disease progression. This setup, in contrast to
statistical methods, is useful for longer term epidemic understand-
ing. Because they were built with disease progression in mind, their
model parameters have disease-relevant interpretations: incubation
and infectious time, or infection propensity, for example. Their
structures are also flexible and can be modified to adapt to various
scenarios. Coupled with parameter interpretability, this facilitates
modeling various demographic breakdowns, social distancing mea-
sures, or testing policies. Because of their nonlinear dynamics, long
term accuracy of compartmental models is highly dependent on ac-
curate parameter estimation. Part of what makes that task difficult
is characteristics of the data, such as small amounts in early days
of an epidemic, or variability in reporting thereafter.

Together, compartmental and statistical models possess quali-
ties that are ideal for informed policy decisions. This work, like
other recent proposals [14, 16], seeks to combine these methods
in a way that ultimately improves forecasting overall. We focus
on two popular models in these classes: CurveFit1 by the Institute
for Health Metrics and Evaluation (IHME) and the susceptible-
infectious-removed (SIR) model well established within the epi-
demiological community [12]. The CurveFit framework provides
a statistical model based on the Gaussian error function. It is an
attractive model when disease progression is in its infancy and
there are very few observed cases in an area or case precedents
elsewhere. During the early days of covid-19’s spread in the United
States, for example, a version of the method was heavily utilized
for future case estimation. Over time, as more data became avail-
able, efforts—both at IHME and more generally—shifted from curve
fitting to compartmental models [4, 10, 11]. The SIR model is the
foundation on which many compartmental models stand. SIR and
its extensions have been widely employed for covid-19 forecasting.

1https://ihmeuw-msca.github.io/CurveFit
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The contribution of this paper is a data-driven approach to train-
ing a compartmental model that improves its long term prediction
accuracy. We find, specifically, that appending predictions from the
IHME CurveFit model to ground truth observations can improve
the general predictive performance of SIR models. The work ex-
amines conditions under which that improvement takes place, and
outlines a technique for applying it in practice.

2 RELATED WORK
This work is most related to research on simulating epidemiological
data, and on techniques from time series augmentation.

2.1 Simulated epidemic data
There have been a number of efforts to simulate covid-19 data in
particular, and viral epidemic data in general. Wang et al. [18] and
Doe et al. [7] develop long short-termmemory (LSTM) architectures
that forecast disease dynamics. In both cases, systems are trained
using simulated data; Wang et al. [18] using a network simulator
and Doe et al. [7] using a compartmental model. That such efforts
would come from groups working with neural network models is
expected, as many of those architectures require large amounts of
data to properly train. The motivation behind generating simulated
data is thus to generate new series of complete disease progres-
sions as sets of independent observations. Our work is inherently
different as we still rely on ground truth data during training; at
least some portion of our training data is assumed to be observed
rather than generated.

2.2 Time series augmentation
Our work is also generally related to efforts around time series
augmentation. The motivation behind many of these advances
is, again, to increase the amount of training data for improved
system generalization. Such techniques include treating slices of a
single time series as if they were unique observations, and warping
portions of a time series by either compressing signal frequency
or resampling [6, 9, 13]. These efforts have been applied outside
of the domain of infectious disease modeling. Once applied to an
epidemic curve, it is unclear what impact they would have on
parameter estimation.

2.3 Time series forecasting
Work in time series forecasting has developed recursive-based
strategies for prediction that are closely related to the methodology
presented in this paper. Two established methodologies, known
as recursive and DirRec, iteratively train using predicted data [1].
Unlike our methodology, the recursive strategy assumes a single
model is being trained. The DirRec strategy alleviates this assump-
tion, however, it is designed to only predict a single point into the
future.

2.4 Combining statistical and compartmental
models

The Institute for Health Metrics and Evaluation (IHME) proposed
a unique combination of statistical and compartmental modeling
to formulate covid-19 estimates [15, 16]. Forecasting is done in

a series of steps. First, spline regression is used to make eight-
day forecasts of death counts from observed data. The effective
reproduction number (Rt ) is then estimated using a compartmental
model (SEIR) using this extended time series. Once Rt is found,
a regression model is used again to associate daily observations
with non-epidemic covariates such as weather or mobility. That
regression model is then forecast into the future to build new dis-
tributions of Rt estimates. Finally, those estimates are turned into
long term projections using an SEIR model with initial values from
the last day of the observed data.

Our methodology differs in that we are interested in the pre-
dicted values, rather than parameters estimated from those values.
In this way, our hybrid model begins its estimation from the final
day of short-term predicted data. More broadly, however, our mo-
tivation and subsequent approach are toward understanding the
consequences of using predicted data in this paradigm. The system
setup is thus simpler than the IHME one.

3 MODELS
This section presents the models used in our work—the IHME
CurveFit model that is used as a data generator and the SIR model
that is used for forecasting. The proposed hybrid model is an SIR
model supplemented with data from CurveFit.

3.1 SIR (Susceptible-Infectious-Removed)
model

The SIR model [12] is a well established within the epidemiological
community. The model defines three compartments in which mem-
bers of the host population can exist: susceptible (S), infectious (I),
or removed (R). Individuals start in the S-compartment, move to
infectious after coming in contact with the disease, and eventually
removed once they are no longer infectious. The model is expressed
as a system of differential equations that parameterize the rates at
which these transitions occur:

dS

dt
= −

βIS

N
(1)

dI

dt
=

βIS

N
− γ I (2)

dR

dt
= γ I , (3)

where N = S + I + R. The model has two parameters: β is the
product of the average number of contacts per person per time and
the probability of transmission during that contact; γ is the rate of
removal from the infectious compartment. In this paper, we use the
following alternate interpretation of β and γ :

R0 = βγ−1 (4)

Tinf ect ious = γ
−1. (5)

R0, the basic reproduction number, is the average number of sec-
ondary cases introduced due to one infected individual in a popula-
tion where everyone is susceptible.

3.2 IHME CurveFit model
CurveFit, proposed by IHME and originally their primary method
of forecasting, is a statistical model that incorporates mixed effects.
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The model was designed to forecast deaths and predict the peak of
the pandemic. Themodel fits the death rateD, defined as cumulative
deaths per population, using the Gaussian error function:

D(t ;α, β,p) =
p

2
Ψ (α(t − β))

=
p

2

(
1 +

2
√
π

) ∫ α (t−β )

0
e−τ

2
dτ

where β is a location-specific inflection point (time at which rate of
change ofD is maximum), α is a location-specific growth parameter,
and p controls the maximum level of D at each location. The model
was initially designed to forecast deaths.We use themodel to predict
total cases, but the basic premise of the model remains the same.

While the CurveFit model allows several modifications for con-
textualization, we choose a simple version of the model, to which
we make the following assumptions: 1) only fixed effects are con-
sidered, not random effects; and 2) no covariates are used.

4 METHOD
This section describes the procedure by which the models outlined
in the previous section (Section 3) were fit. In addition to model pa-
rameter estimation, it outlines our windowed approach to training
and testing that formulated our results. The approach is motivated
by reality: having a progressively updated set of observed daily
infection counts and needing to make new forecasts for unseen
periods.

4.1 Pre-Processing
Let W be a time series of observed infections. We divide W into
multiple overlapping windowsW0:m,W1:m+1,W2:m+2, . . . ,Wl−m:l
wherem is the length of the window and l is the length of the time
series. Models were trained and evaluated on consecutiveW ’s inW.
For eachW , data for training and evaluation was created by divid-
ing the window into two respective portions:w0,w1, . . . ,wi , and
wi+1, . . . ,wm−1. The top panel of Figure 1 visualizes this process.

The act of training and evaluation for a givenW is known as
a run. The training portion ofW was smoothed using a centered
rolling mean with a window length of seven days. Data points lost
to the rolling computation were replaced with their corresponding
raw observations.

4.2 Fitting the SIR model
4.2.1 Choice of initial conditions for SIR. The SIR model requires
members of the population N to be assigned to one of its three
compartments. Because we have actual case count estimations,
this assignment can be done in an informed manner. If we assume
detected cases are immediately isolated and no longer contribute
to the spread of the disease, then the removed compartment (R)
corresponds to the total cases reported. The removed compartment
is initialized with the total cases on the day from which training
starts. However, the susceptible and infected compartments are
not observed. To overcome this, the initial number of infectious
individuals is assumed to be some fraction of the initial total cases.
That fraction, called infectious ratio, is treated as a latent variable
and estimated in conjunction with the other model parameters.
The initial number of susceptible individuals can then be found by

Figure 1: Windowed approach for training. The upper plot shows
the sliding window over the time series, divided into a train set
(blue) and test set (green and yellow). For the hybrid model, a
portion of training data comes from CurveFit predictions (green).
The lower plot shows the time series of estimated model parameters
(solid). For SIR and hybrid models, a rolling mean is taken over the
time series of parameters (dashes). The rolling mean at i is θ i . The
new prior at i is given by

[
θ i (1 − h),θ i (1 + h)

]
. We used h = 0.05

in our experiments.

Table 1: Initial ranges of model parameter distributions. All distri-
butions are uniform, where “low” and “high” values are inclusive.

SIR IHME

R0 Infectious Inf. Ratio α β p

Low 0.5 1.0 0.0 -7.0 1.0 -40.0
High 3.5 20.0 20.0 -0.1 50.0 -1.0

manipulating the population assumption (Section 3.1): S = N −

R(Ir + 1), where Ir is the infectious ratio.

4.2.2 Parameter estimation. Bayesian optimization [2] was used
to estimate SIR parameters, including model parameters and initial
case counts. Uniform priors were specified for all parameters. The
initial case count in the infectious compartment was found by
estimating the infectious ratio Ir .

The parameters of the SIR model vary depending on the data.
Early in an epidemic lifecycle, there is seldom enough information
to have good estimates of exact parameter values or to confidently
define narrow priors that encompass an accurate value. This is
further complicated by parameter differences that may arise across
populations. To not bias our process to one region or point in time,

2020-12-04 17:10. Page 3 of 1–8.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.04.20243956doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.04.20243956
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nayana Bannur, Vishwa Shah, Alpan Raval, and Jerome White

we use priors with broad initial support. Table 1 details the initial
parameter ranges we used irrespective of the case counts being fit.

The nature of SIR models is such that several different parameter
combinations can provide good fits to the underlying data. This
highlights a drawback to using priors with broad support in that
final parameter estimates may not be representative of realistic
model parameters. While the optimization algorithm could poten-
tially overcome this challenge, it may not do so in a reasonable
time. To overcome this, we propose a historically informed fitting
procedure.

The SIR model is first fit to each training window in W using
the initial parameter ranges. This forms a set of best parameters θ i
for each window. This time series of parameters is maintained and
used to inform future training. Formally, let θ0,θ1, . . . ,θn be the
time series of best-parameters found for windowsW0,W1, . . . ,Wn .
We take a three day rolling mean of the time series of parame-
ters as shown in Figure 1. This rolling mean of parameters is de-
noted as θ0,θ1, . . . ,θn . We then construct a new uniform prior[
θn (1 − h),θn (1 + h)

]
which is used to re-estimate the SIR model

parameters forWn . Through experimentation, we fixed h at 0.05
for all parameters, for all training periods.

This methodology was employed because we found parameter
sets obtained for consecutive runs to vary widely, more so than
the incremental changes in the data would suggest. This training
methodology mitigated that pattern, yielding more consistent and
realistic parameter estimates across windows.

4.3 Fitting the IHME CurveFit model
The data fed into the CurveFit model was loд(X/N ) where X is
the time series obtained after pre-processing (Section 4.1) and N is
the total population of the region corresponding to the data. The
CurveFit model takes bounds and initial values for its parameters
as input. The uniform bounds used for the parameters are specified
in Table 1. The exponential function was applied to parameters α
and p to ensure that they were non-negative. The initialization of
parameters was important because the optimization problem being
solved is non-convex. Hence, the initial values were considered
as hyperparameters and tuned by Bayesian optimization using
80 percent of the window as a training set, and 20 percent as a
validation set. The model was fit within the CurveFit framework
using the L-BFGS-B algorithm [3].

4.4 Fitting the hybrid model
The hybrid model is a SIR model trained using a portion of Curve-
Fit’s forecast, in addition to ground truth data. Recall (Section 4.1)
that training and evaluation for a windowW take place, respec-
tively, over points w0,w1, . . . ,wi , and wi+1, . . . ,wm−1 inW . For
the hybrid model, the train set is extended towi+n , where i +n < m
and values for i + 1 to i + n come from estimates made by CurveFit.
For this work, we fix n at five. This extended train set was treated
as raw data—the pre-processing and SIR-specific fitting techniques
previously described were applied.

Figure 2: Total infected cases collected from public sources used for
this analysis.

Table 2: Details of case estimate data used for this study.

Region Start date End date Source Days

Italy 19 Feb 14 Aug JHU 177
Delhi 29 Mar 18 Aug Covid19India 142
New York City 3 Mar 27 Aug NY Times 177

5 EXPERIMENTAL SETUP
We performed experiments to compare the CurveFit, SIR, and the
hybrid models across multiple regions and time periods. The aim
of these experiments was a) to determine optimal configurations
for the models used, b) to determine whether the hybrid model
has a statistically significant improvement in performance over the
SIR model, c) to understand how the models compare across the
stages of the pandemic and across geographies, and d) to evaluate
the models at various lookaheads.

5.1 Data setup
The datasets used consisted of publicly available daily case counts
for various regions around the world. Population figures (N ) for
each region were also derived from publicly available data sources.
Datasets were chosen to represent a range of geographies, adminis-
trative levels, and epidemic time scales to provide a diverse set of
conditions for evaluation. Regions selected were Italy, New York
City, and Delhi. The Italy data is a country level dataset, with an
epidemic curve that has already peaked in the past. New York City’s
case count trajectory is similar, albeit at a county level. Delhi repre-
sents state-level data but has a different case count profile. Curves
for each region are visualized in Figure 2.

Data was downloaded from multiple sources. Data for Italy came
from the Johns Hopkins Corona Virus Resource Center [8], data for
New York City came from The New York Times Covid-19 Data [17],
and data for Delhi came from Covid19india [5]. For each region,
data was collected from the time the pandemic started in the region,
or from the earliest date on which reliable data became available.
For each set, the cumulative time series of total cases was used.
Table 2 shows a summary of the data used.

5.2 Training setup
The data for each region was divided into windows as described
in Section 4.1, then fit using the approaches described in Section 4.
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The initial priors for each region were fixed to the defaults specified
in Table 1.

An initial set of experiments was performed to determine the
optimal length of the training period. In these experiments, the
time series was divided into windows. For each window, the models
were fit using training periods varying between six and 40 days and
evaluated on a fixed 30 day test period. The models were not re-
fitted, but multiple runs were performed for the same configuration
to assess the mean and variance of the error. Based on the test
MAPE, a training period of 30 days was found to be a reasonable
choice across models and regions and was used in all subsequent
experiments.

5.3 Evaluation metrics
Models were evaluated using the absolute percentage error (APE)
between a given day’s estimate and its ground truth. We often
aggregate APE over some dimension by taking the mean of the
collection. This metric is referred to as the mean absolute per-
centage error (MAPE). Aggregations include all estimated days
independently, estimated days within a given forecast period, and
corresponding lookahead days per forecast period.

6 RESULTS
Recall from our experimental setup that there are several sets of
training periods over a given case-count time series. For each pe-
riod, the models produce estimates for several days into the future
relative to that period. This section looks at the results of those
estimates, aggregated in various ways. Because the first five days of
forecast data were used as training for the hybrid model, evaluation
starts from day six for a period of 25 days thereafter.

6.1 Comparison of SIR and hybrid models
The overall evaluation consists of treating each predicted day as a
unique observation. Aggregation of point-wise errors in this setting
is the mean over all predicted days for each model separately over
every region. These means and their respective differences can be
seen in the “system mean” columns of Table 3. Positive values in
the difference column indicate the hybrid model having a lower
MAPE than the SIR model. This was found to be the case in all
regions, with differing levels of magnitude: the difference is most
pronounced in Italy, with New York City having a lower, but non-
trivial improvement. While there is an improvement of hybrid over
SIR observed in Delhi, it is small.

To understand whether these differences were statistically sig-
nificant, a sign test was performed between the difference of SIR
and hybrid APEs for each region (Table 3: “sign test”). We are aware
of the pitfalls around statistical hypothesis testing in this context;
notably, the lack of independence across our samples (runs), and
multiple hypothesis testing across regions. However, the sign test
does provide a level of confidence that differences observed be-
tween models were not accidental. The median of differences in
each region was found to be positive and significant at the p < 0.01
level. The test was set up to evaluate SIR minus hybrid, meaning a
positive point estimate corresponded to a higher SIR MAPE.

Figure 3: MAPE over the entire testing window, across locations.

6.2 Performance across stages of the pandemic
Instead of aggregating across all days, we now consider the MAPE
grouped-by training period. This means a set of APEs aggregated
per 25-day forecast window. Figure 3 presents these results, where
the x-axis denotes the start of each training period. For each curve,
the lines denote MAPE across the 25 day lookahead window that
corresponds to that date’s training period. The ribbon around each
curve is the 95 percent bootstrapped confidence interval of that
distribution.

From this perspective, we see a large benefit of the hybrid model
in New York City and Italy coming from early days in the epidemic.2
This phenomenon is discussed in subsubsection 6.2.1. After approx-
imately the first month, SIR and hybrid performance are similar,
with the hybrid exhibiting less variance. The disease dynamics in
May, for example, are difficult for SIR to consistently predict. As
found from our overall assessment, the hybrid and SIR models fol-
low one another quite closely in Delhi. In addition, the magnitude
of the error overall is much less in Delhi.

Figure 4 shows differences in MAPE values between models
across the epidemic time series, providing a different perspective
on these results. The top figures show the observed case counts (re-
peated from Figure 4) while the bottom figures show the difference
between hybrid MAPE and SIR MAPE. The difference is normalized
by the standard deviation of SIR to be consistent with Glass’s ∆. The
two sets of plots are aligned by date. The plots contain green and

2Note that the y-axis is log scale.
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Table 3: Forecast results of the SIR and hybrid models across regions.Model mean is MAPE observed over all forecast days; positive differences
correspond to the hybrid model being better. A sign test was performed to assess whether the median of MAPE differences (point estimate)
significantly differed from zero; N is the total number APE’s considered and N+ is the fraction of pair-wise differences that were greater-than
zero. Effect size (d) is Glass’s ∆ over MAPE’s aggregated per run and per lookahead day. Bracketed values are 95 percent confidence intervals
around respective estimates.

Model mean Sign test Effect size (d)

Location SIR Hybrid Difference N N+ Point Estimate p-value Run Lookahead

Delhi 25.87 21.15 4.71 2850 0.67 2.05 [1.58, 2.52] <1e-70 0.22 [-0.49, 0.94] 0.42 [-0.63, 1.47]
New York City 225.83 149.95 75.88 3548 0.76 0.38 [0.34, 0.41] <1e-99 0.15 [-0.53, 0.82] 0.92 [-0.15, 1.99]
Italy 182.53 54.55 127.98 3823 0.61 0.17 [0.14, 0.20] <1e-44 0.78 [0.10, 1.45] 2.75 [1.52, 3.98]

Figure 4: Case counts (top panels) and differences in MAPE between
SIR and hybrid models (bottom panels). The normalized difference
is the hybrid minus sir, divided by the standard deviation of SIR.
Green bars denote regions in which the hybrid model is better-than
the SIR model by more than one-half standard deviation; red bars
denote the opposite.

red highlighted regions denoting places in which the hybrid model
did better or worse, respectively. A bar is present for a given day
if the difference is less-than (green) or greater-than (red) one-half
standard deviation across the series. Again, for New York City and
Italy, we find large differences in the initial portion of the forecasts.
Thereafter the training methodology favors the hybrid approach,
but to a lesser extent. Delhi has an opposite pattern, and is less
consistent: SIR performance is better in the beginning; the hybrid
model is generally better thereafter.

To quantify the differences in model performance under this
aggregation method, Table 3 presents effect sizes for each region
(Effect size: Run). The effect size calculated is Glass’s ∆, with SIR as
the control group. As other analysis has suggested, the benefit of
our solution on Italian data is clear: one can expect an improvement
of over one-half standard deviation on average. For New York City
and Delhi, an improvement can be expected, but the magnitude is
smaller.

Figure 5: Estimated and observed (“obs”) case counts on two early
days in the Italy data set. Figures on the left are for February 20;
the right are for March 1. The top row displays the first five days.
The CurveFit (“crvfit”) data from this period was used to train the
hybrid model. The bottom row displays the 30 day estimates and
observations

6.2.1 Performance in early phases. Evident from Figure 3 are the
relatively high MAPE values early in the pandemic from both com-
partmental models. In New York City and Italy, the first several
forecasts have MAPEs well above a few hundred. These values
were maintained in our analysis because they represent a realistic
situation that modelers face: having to provide forecasts when very
little data is available.

Figure 5 provides an example of what is happening in this period
for the Italy data set. These are plots of case counts (y-axis) during a
subset of the time series (x-axis). The left-hand panels show ground
truth and forecasts starting from February 20th; the right-hand
panels show the same but start ten days later on March 1st. The
bottom panels display the entire 25 day forecast period for actual
cases, and SIR and hybrid predictions. The top panel shows the first
five days of each period, and also plots CurveFit estimates for the
duration.

Rapid change in the disease progression, characteristic in the
early days of these observations, results in highly dissimilar train
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Figure 6: Average performance across windows for each location on
every forecasted day. The windowed nature of the evaluation pro-
cess produced numerous point estimates for each future-forecasted
day. Days one through five were used as training for the hybrid
model, and are thus not included.

and test sets. The parameters learned from training data are not rep-
resentative of the test data. In this situation, the SIR model performs
poorly as it is not equipped to handle such drastic variations. We
see that in this case, CurveFit is closer to reality, using its estimates
acts to bring SIR in line with that. As more consistent data forms
across the test and train sets, SIR is able to get closer to the ground
truth.

This situation did not occur in Delhi because the sharp exponen-
tial growth predicted by the model was not observed in that data set.
This may have been in part because disease spread was contained
by lockdowns, social distancing measures, and other interventions
that took place earlier than the other two regions. Case growth
in Delhi is thus characterized by a more gradual rise in cases in
early stages than observed elsewhere. The predictions from the SIR
model are far more realistic in this situation; evident from the red
bars in Figure 4.

6.3 Performance at varying lookaheads
We now focus on average forecast-day performance for each model
across various locations. Figure 6 presents a visualization. Each
line represents MAPE (y-axis) at a given lookahead day (x-axis).
The ribbon around each line denotes the 95 percent bootstrapped
confidence interval of the distribution at that point. From this figure,
the hybrid model is an improvement to the standard SIR model
on just about every day, with that improvement becoming more
pronounced as forecast lookahead time increases.

Table 3 presents the effect size under this aggregation (Effect size:
Lookahead). Again, we use Glass’s ∆, with SIR as the control group.
The improvement seen in Italy and New York City is meaningful,

Figure 7: Total infected cases collected from public sources used for
unseen data. Counts for seen data are also plotted for references.

with both models producing almost a standard deviation or more
of improvement. The effect size in Delhi is more moderate.

7 THE HYBRID MODEL IN PRACTICE
There are several techniques that can be explored to improve model
performance. This section looks at a rule-based approach as a first
step.

7.1 Rule based approach
Based on analysis and exploration from Section 6, we devise a rule-
based model. We have a history of evaluation data from runs that
started on earlier dates, for the SIR and hybrid models. From this
history, we use the results from recent runs to determine which
model is likely to perform best in the future. Essentially, we choose
a “best model” by comparing historical SIR and hybrid MAPEs
from a subset of previous runs. While in previous sections we
aggregated errors over all lookahead days to obtain the MAPE, here
we aggregate errors from previous runs only over days that are in
the current train window. This ensures that there is no data leakage
from the forecast period. Further, since the hybrid model does not
have forecasts for days one through five, we do not have evaluation
data for the five most recent runs. Thus, to determine the best model
for run n, we use evaluation data from runs n − 6,n − 7, . . . ,n − k .
Having obtained MAPEs for each of these previous runs, we further
aggregate the MAPEs over all of them for each model. This results
in two point estimates—historical MAPE for SIR and for the hybrid.
The model with the lower historical MAPE is considered the best
model and chosen for forecasting. In this situation k is seven, hence
using seven previous runs. The value of k is tuned to exploit the
optimal amount of past data.

7.2 Comparative evaluation
We test the model resulting from our rule based approach along-
side the existing SIR and hybrid models, as well as three others.
The first two of these three are “oracles” that are aware of model
performance on the forecast day. One oracle always selects the
best-performing model, while another always selects the worst. We
denote these models as Ωb and Ωw , respectively. These models
implicitly establish upper and lower bounds on performance. The
third model is a random selector, choosing either SIR or the hybrid
with equal probability irrespective of known performance.
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Table 4: Model performance in different regions. SIR and hy-
brid (HYB) models were outlined in Section 3. Other models, out-
lined in Section 7, generate sets of forecast by selecting forecasts
from SIR and HYB. “Rand” is a random selector; “prop” is the rule
based system outlined in the text. Highlighted cells denoted places
in which the rule-based system had a lower MAPE than both SIR
and HYB.

Region SIR HYB Ωb Ωw Rand Prop

Delhi 26.64 20.51 19.77 27.38 23.53 21.57
Italy 32.71 18.11 17.72 33.10 24.37 18.06
NYC 64.32 29.70 29.09 64.93 45.88 29.69

LA 209.80 116.23 115.40 210.63 156.49 116.19
Pune 23.89 21.11 19.13 25.86 22.81 24.18

Table 4 presents the results of this exercise. Columns represent
the various models, rows are regions in which those models were
run, and values are 25-day MAPEs. None of the newly proposed
models produced new forecasts. Instead, they combined existing
forecasts from the SIR and hybridmodels in various ways. Themean
MAPEs for the SIR and hybrid models differ from Table 3 because
some training periods were left out due to not being considered in
the proposed model.

In Italy and New York City, regions in which this paper has
focused, the proposed model performs closer to the best-case oracle
than any other model. This is not the case in Delhi. To get a sense
of its generality, the experiment was carried out in two additional
regions that have thus far not been explored: Pune and Los Angeles,
areas that are geographically and administratively similar to Delhi
and New York City, respectively. Figure 7 plots the cumulative
infected curves for these regions to provide a comparison of disease
progression. Of these unseen regions, the rule based system is the
best performer in Los Angeles.

While the advantage of the rule-based system is slight, differing
from less than a percent on average, the results are still encouraging.
Even for the regions in which the systemwas not better than the SIR
or hybrid model, it was not far from the worst case of the two. For a
practitioner, the rule-based system provides a sound methodology
for using our approach. For a researcher, these results serve as a
first point of comparison to alternate approaches.

8 CONCLUSIONS AND FUTUREWORK
This paper proposed, detailed, and evaluated a new method for
training compartmental models. It was shown that by using a few
days of cases forecast by a statistical model, the overall performance
of the compartmental model was improved. This included not only
per-day forecasts, but forecasts aggregated over the duration of the
observed epidemic lifecycle. Results were shown for various regions,
each exhibiting slightly different disease dynamics. Although effect
sizes varied, the hybrid approach was generally better overall.

This work can be extended in a number of directions. Several
training parameters were fixed, based on manual analysis of eval-
uation on the training sets. A natural next step is to learn these
features automatically; tuning the number of days of synthetic
data used, or learning a weighting of past parameter estimates to

construct the prior for the present, for example. Using techniques
from time series or sequence modeling could help to better estimate
when and where the hybrid approach is most appropriate.

This work only considered cumulative infections. However, the
hybrid model could be adapted to other use cases, such as deaths.
This work could also be adapted to compartmental models more
complex than SIR. Models that have additional compartments or
include stochastic dynamics are more realistic, but are more diffi-
cult to train. These situations may benefit from additional future
estimates.

Finally, it has been shown that covariate data—lockdowns, social
distancing, variable testing rates—can have a strong impact on
model performance. It could be valuable to integrate such additional
data in this context.
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