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Abstract

Testing capacity for COVID-19 remains a challenge globally
due to the lack of adequate supplies, trained personnel, and
sample-processing equipment. These problems are even more
acute in rural and underdeveloped regions. We demonstrate
that solicited-cough sounds collected over a phone, when
analysed by our AI model, have statistically significant signal
indicative of COVID-19 status (AUC 0.72, t-test, p < 0.01,
95% CI 0.61—0.83). This holds true for asymptomatic pa-
tients as well. Towards this, we collect the largest known
(to date) dataset of microbiologically confirmed COVID-19
cough sounds from 3,621 individuals. When used in a triag-
ing step within an overall testing protocol, by enabling risk-
stratification of individuals before confirmatory tests, our tool
can increase the testing capacity of a healthcare system by
43% at disease prevalence of 5%, without additional supplies,
trained personnel, or physical infrastructure.

1 Introduction
On 11th March, 2020, the World Health Organisation
(WHO) declared COVID-19 (also known as the coronavirus
disease, caused by SARS-CoV2) a global pandemic. As of
20th August, 2020, there were more than 22M confirmed
cases of COVID-19 globally and over 788K deaths (JHU
2020). Additionally, COVID-19 is still active, with 267K
new cases and 6,030 deaths per day world wide. As we
eagerly await new drug and vaccine discoveries, a highly
effective method to control the spread of the virus is fre-
quent testing and quarantine at scale to reduce transmission
(Kucharski et al. 2020). This has led to a desperate need for
triaging and diagnostic solutions that can scale globally.

While the WHO has identified the key symptoms for
COVID-19 – fever, cough, and breathing difficulties, and re-
cently, an expanded list (WHO 2020b), these symptoms are
non-specific, and can deluge healthcare systems. Fever, the
most common symptom, is indicative of a very wide variety
of infections; combining it with a cough reduces the possi-
ble etiologies to acute respiratory infections (ARIs), which
affect millions at any given time. Additionally, the majority
of COVID-19 positive individuals show none of the above
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symptoms (asymptomatics) but they continue to be conta-
gious (WHO 2020a; Daniel P. Oran 0; Day 2020). To ad-
dress this challenge, we present an AI-based triaging tool
to increase the effective testing capacity of a given public
health system. At the current model performance and at a
prevalence of 5–30%, our tool can increase testing capacity
by 43–33%.

There have been various successful efforts using CT scans
and X-rays to classify COVID-19 from other viral infec-
tions (Wang and Wong 2020; Hall et al. 2020; Gozes et al.
2020; He et al. 2020). This suggests that COVID-19 affects
the respiratory system in a characteristic way (Huang et al.
2020; Imran et al. 2020) (see Section II (B) of (Imran et al.
2020) for a detailed summary). The respiratory system is a
key pathway for humans to both cough and produce voice
where air from the lungs passes through and is shaped by
the airways, the mouth and nasal cavities. Respiratory dis-
eases can affect the sound of someones breathing, coughing,
and vocal quality as most readers will be familiar with from
having e.g. the common cold. Following this intuition we in-
vestigate whether there is a COVID-19 signature in solicited
cough sounds and if it can be detected by an AI-model.

The main contributions of this paper are as follows: (i) We
demonstrate with statistical significance that solicited-cough
sounds have a detectable COVID-19 signature; (ii) Our mod-
elling approach achieves a performance of 72% AUC (area
under the ROC curve) on held out subsections of our col-
lected dataset; (iii) We demonstrate with statistical signifi-
cance that solicited-cough sound has a detectable COVID-
19 signature among only asymptomatic patients (Fig. 7b);
(iv) We collect a large dataset of cough sounds paired with
individual metadata and COVID-19 test results. To the best
of our knowledge this is currently the largest cough dataset
with verified ground truth labels from COVID-19 Reverse
Transcription Polymerase Chain Reaction (RT-PCR) test re-
sults; and (v) Finally, we describe a triaging use case and
demonstrate how our model can increase the testing capac-
ity of the public health system by 43%.

2 Motivation and Related Work
Sound has long been used as an indicator for health.
Skilled physicians often use stethoscopes to detect the
presence of abnormalities by listening to sound from the
heart or the lungs. Machine learning (ML), in particu-
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Figure 1: Cough Against Covid. An overview of our non-invasive, AI-based pre-screening tool that determines COVID-19
status from solicited-cough sounds. With the AI model set to an operating point of high sensitivity, an individual is referred
for gold standard RT-PCR test if they triage positive for risk of COVID-19. At 5% disease prevalence, this triaging tool would
increase the effective testing capacity by 43%.

lar, deep learning, has shown great promise in automated
audio interpretation to screen for various diseases like
asthma (Oletic and Bilas 2016) and wheezing (Li et al.
2017) using sounds from smartphones and wearables. Open-
source datasets like AudioSet (Gemmeke et al. 2017) and
Freesound Database (Fonseca et al. 2018) have further
boosted research in this domain.

Automated reading of chest X-rays and CT scans (Wang
and Wong 2020; Hall et al. 2020; Gozes et al. 2020; He
et al. 2020) have been widely studied along with typically
collected healthcare data (Soltan et al. 2020) to screen for
COVID-19. Respiratory sounds have also been explored for
diagnosis (see (Deshpande and Schuller 2020) for a nice
overview). Some research has explored the use of digital
stethoscope data from lung auscultation as a diagnostic sig-
nal for COVID-19 (hui Huang et al. 2020). The use of
human-generated audio as a biomarker offers enormous po-
tential for early diagnosis, as well as for affordable and ac-
cessible solutions which could be rolled out at scale through
commodity devices.

Cough is a symptom of many respiratory infections.
Triaging solely from cough sounds can be simple oper-
ationally and help reduce load on the healthcare system.
(Saba 2018; Botha et al. 2018) detect tuberculosis (TB)
from cough sounds, while (Larson et al. 2012) track the
recovery of TB patients using cough detection. A prelimi-
nary study on detecting COVID-19 from coughs uses a co-
hort of 48 COVID-19 tested patients versus other pathology
coughs to train a combination of deep and shallow mod-
els (Imran et al. 2020). Other valuable work in this do-
main investigates a similar problem (Brown et al. 2020),
wherein a binary COVID-19 prediction model is trained on
a dataset of crowdsourced, unconstrained worldwide coughs
and breathing sounds. In (Han et al. 2020) speech record-
ings from COVID-19 hospital patients are analyzed to au-
tomatically categorize the health state of patients. A crowd-

sourced dataset (Sharma et al. 2020) of cough, breathing and
voice sounds was also recently released to enable sound as a
medium for point-of-care diagnosis for COVID-19.

Apart from (Imran et al. 2020) and (Brown et al.
2020), none of the previous efforts actually detect COVID-
19 from cough sounds alone. (Imran et al. 2020) covers
only 48 COVID-19 tested patients, while our dataset con-
sists of 3,621 individuals with 2,001 COVID-19 tested pos-
itives. The dataset used in (Brown et al. 2020) was en-
tirely crowdsourced with the COVID-19 status being self-
reported, whereas our dataset consists of labels directly re-
ceived from healthcare authorities. Further, we show that
COVID-19 can be detected from the cough sounds of asymp-
tomatic patients as well. Unlike previous works, we also
demonstrate how label smoothing can help tackle the inher-
ent label noise due to the sensitivity of the RT-PCR test and
improve model calibration.

3 Data
In this section we outline our data collection pipeline as well
as the demographics and properties of the gathered data. We
further describe the subset of the data used for the analysis
in this paper.

We note here that we use two types of data in this work.
First, we describe data collected from testing facilities and
isolation wards for COVID-19 in various states of India,
constituting the largest dataset of tested COVID-19 cough
sounds (to the best of our knowledge). Next, we mention
several open-source cough datasets that we use for pretrain-
ing our deep networks.

3.1 COVID-19 cough dataset
Data collection We create a dataset of cough sounds from
COVID-19 tested individuals from numerous testing facili-
ties and isolation wards throughout India (collection is on-
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Figure 2: Dataset demographics. From left to right – distribution of the number of individuals based on COVID-19 test result,
sex, location and age.
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Figure 3: Duration statistics. Distribution of the duration of
the cough audio recordings.

going). Testing facilities provide data for both positively and
negatively tested individuals, whereas isolation wards are
meant only for those who have already tested positive. For
isolation wards, we only consider individuals within the first
10 days after an initial positive result through RT-PCR. Our
eligibility criteria also requires that individuals should be in-
dependently mobile and be able to provide cough samples
comfortably. The data collector is required to wear a PPE
kit prior to initiating conversation, and maintain a distance
of 5 feet at all times from the participant. The participant
is required to wear a triple layer mask and provide written
consent. For minors, consent is obtained from a legally ac-
ceptable representative. Our data collection and study have
been approved by a number of local and regional ethics com-
mittees 1.

For each individual, our data collection procedure consists
of the following 3 key stages:

1. Subject enrollment: In the first stage, subjects are en-
rolled with metadata such as demographic information
(including self-reported age and sex), the presence of
symptoms such as dyspnea (shortness of breath), cough
and fever, recent travel history, contact with known
COVID-19 positive individuals, body temperature, and
any comorbidities or habits such as smoking that might
render them more vulnerable.

2. Cough-sound recording: Since cough is an aerosol gen-
erating procedure, recordings are collected in a desig-
nated space which is frequently disinfected as per fa-
1The names of the precise committees have been omitted to pre-

serve anonymity, and will be added to any future versions.

cility protocol. For each individual, we collect 3 sepa-
rately recorded audio samples of the individual coughing,
an audio recording of the individual reciting the num-
bers from one to ten and a single recording of the in-
dividual breathing deeply. Note here that these are non-
spontaneous coughs, i.e. the individual is asked to cough
into the microphone in each case, even if they do not nat-
urally have a cough as a symptom.

3. Testing: RT-PCR test results are obtained from the re-
spective facility’s authorized nodal officers.

For each stage, we utilise a separate application interface.
Screenshots for the apps and further details are provided in
suppl. material. We note here that the COVID-19 test result
is not known at the time of audio cough recording – minimis-
ing collection bias, and that all data collection is performed
in environments in which potential solutions may actually
be used.

Dataset As of August 16th, 2020 our data collection ef-
forts have yielded a dataset of 3,621 individuals, of which
2,001 have tested positive. In this paper we focus on a cu-
rated set of the collected data (until 20 July, 2020). We also
restrict our models to use only the cough sounds (and not
the voice or breathing samples). Henceforth, all results and
statistics will be reported on this data used in our analysis
after filtering and manual verification (details of which are
provided in the suppl. material). Our curated dataset con-
sists of 3,117 cough sounds from 1,039 individuals. We aim
to release some or all of the data publicly to the research
community. Figures 2 and 3 show distribution statistics of
the data. Out of 1,039 individuals, 376 have a positive RT-
PCR test result (Fig. 2, left) and the sex breakdown is 760
male and 279 female. (Fig. 2, center-left). (Fig. 2, center-
right) highlights the distribution by the facility from which
the data was collected (we use data from 4 facilities, F1-F4).
(Fig. 2, right) shows the age distribution, which is skewed
towards middle-aged individuals (between 20-40 years of
age), while Fig. 3 shows the distribution of the lengths of
our cough samples. Fig 4 shows the distribution of symp-
toms recorded for dyspnea, cough and fever. Interestingly,
note that most individuals are asymptomatic. In our dataset,
the most common single symptom among COVID-19 posi-
tive individuals is fever while that among negatives is cough,
followed by an intersection of cough and fever.
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Figure 4: Symptom co-occurrence statistics. We show statis-
tics for individuals with an RT-PCR positive (top) and neg-
ative (bottom) test for the following symptoms: dyspnea
(shortness of breath), cough and fever.

3.2 Open-source non-COVID cough datasets

In the absence of explicit feature engineering, deep Convolu-
tional Neural Networks (CNNs) are data hungry relying on
thousands of manually annotated training examples. Given
the challenges of training deep CNNs from scratch on small
datasets, we collect a larger dataset of cough samples from
various public datasets (Fonseca et al. 2018; Al Hossain
et al. 2020; Sharma et al. 2020) which we use to pretrain our
model. In total we obtain 31,909 sounds segments, of which
27,116 are non-cough respiratory sounds (wheezes, crackles
or breathing) or human speech, and 4,793 are cough sounds.
The various data sources and their statistics are as follows:
1. FreeSound Database 2018 (Fonseca et al. 2018): This
is an audio dataset consisting of a total of 11,073 audio files
annotated with 41 possible labels, of which 273 samples
are labelled as ‘cough’. We believe the cough sounds cor-
respond to COVID-19 negative individuals as these sounds
were recorded well before the COVID-19 pandemic.
2. Flusense (Al Hossain et al. 2020): This is a subset of
Google’s Audioset dataset (Gemmeke et al. 2017), consist-

ing of numerous respiratory sounds. 2 We use 11,687 audio
segments of which 2,486 are coughs.
3. Coswara (Sharma et al. 2020): This is a curated dataset
of coughs collected via worldwide crowd sourcing using
a website application3. The dataset contains samples from
570 individuals, with 9 voice samples for each individual,
including breathing sounds (fast and slow), cough sounds
(heavy and shallow), vowel sounds, and counting (fast and
slow). In total the dataset consists of 2,034 cough sam-
ples and 7,115 non-cough samples. We are unaware of the
COVID-19 status of the coughs in this dataset as it was col-
lected after the pandemic broke out.

4 Method
Inspired by the recent success of CNNs applied to audio in-
puts (Hershey et al. 2016), we develop an end-to-end CNN-
based framework that ingests audio samples and directly
predicts a binary classification label indicating the probabil-
ity of the presence of COVID-19. In the following sections,
we outline details of the input, model architecture, training
strategies employed and inference.

4.1 Input
During training we randomly sample a 2-second segment
of audio from the entire cough segment. We use short-term
magnitude spectrograms as input to our CNN model. All au-
dio is first converted to single-channel, 16-bit streams at a
16kHz sampling rate for consistency. Spectrograms are then
generated in a sliding window fashion using a hamming win-
dow of width 32ms and hop 10ms with a 512-point FFT.
This gives spectrograms of size 257 x 201 for 2 seconds of
audio. The resulting spectrogram is integrated into 64 mel-
spaced frequency bins with minimum frequency 125Hz and
maximum frequency 7.5KHz, and the magnitude of each bin
is log transformed. This gives log-melspectrogram patches
of 64 x 201 bins that form the input to all classifiers. Finally,
the input is rescaled by the largest magnitude over the train-
ing set to bring the inputs between -1 and 1.

4.2 CNN architecture
An overview of our CNN architecture can be seen in Fig. 5.
As a backbone for our CNN model we use the popular
ResNet-18 model consisting of residual convolution lay-
ers (He et al. 2016), followed by adaptive pooling layer in
both the time and frequency dimensions. Finally, the out-
put is passed through 2 linear layers and then a final predic-
tive layer with 2 neurons and a softmax activation function,
which is used to predict whether the input cough sample has
COVID-19. Dropout (Srivastava et al. 2014) and the ReLU
activation function are used after all linear layers.

4.3 Training strategies
Augmentation Given the medium size of our dataset, we
adopt the standard practise of data augmentation, applying

2Including speech, coughs, sneezes, sniffles, silence, breathing,
gasps, throat-clearing, vomit, hiccups, burps, snores, and wheezes.

3https://coswara.iisc.ac.in/

https://coswara.iisc.ac.in/
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Figure 5: Network architecture. An input cough spectrogram goes through a deep CNN to predict the presence of COVID-19.

transformations to our data to boost performance and in-
crease robustness. We perform data augmentation online,
i.e. transformations are applied randomly to segments dur-
ing training. We perform two types of augmentation: (1)
the addition of external background environmental sounds
from the ESC-50 dataset (Piczak 2015), and (2) time and fre-
quency masking of the spectrogram input (Park et al. 2019).
ESC-50 (Piczak 2015) consists of 2,000 environmental au-
dio recordings from 50 environmental classes. At train time,
we randomly select a single noise sample and modulate the
amplitude by a random factor between 0.4 and 0.75, before
adding it to the input cough spectrogram.

Pre-training Our model architecture is first pretrained on
the open source cough datasets outlined in Sec. 3.2. We par-
tition the data into train and validation (the validation set
consists of 648 cough and 2882 non-cough sounds), and
train our model to simply predict the presence of a cough
or not (cough detection). Note that this is a proxy task and
we use this simply to pretrain our model and learn a good
initialisation of weights.

We first initialise the ResNet-18 backbone with weights
obtained from pretraining on ImageNet (the additional lin-
ear layers after are initialised randomly). Given the highly
unbalanced nature of the pretraining data, we upsample the
minority class to ensure that each batch has the equal num-
ber of cough and non-cough samples. AdamW (Loshchilov
and Hutter 2017) is used as the optimizer with a learning
rate of 1e-5 and weight decay 1e-4. The model is trained for
200 epochs and on the proxy cough vs. non-cough task, we
achieve an AUC of 0.98 on the validation set.

Label smoothing For our final task of COVID-19 classifi-
cation, we note here that the ground truth labels come solely
from the RT-PCR test for COVID-19. Even though this test
is widely used, it is known to make mistakes, i.e. it is esti-
mated to have a sensitivity of almost 70% at a specificity of
95% (Watson, Whiting, and Brush 2020). Hence it is possi-
ble that a number of cough samples may have the wrong la-
bel, and penalising our model for making mistakes on these
samples can harm training. Hence we apply a standard label
smoothing technique (Mller, Kornblith, and Hinton 2019)
during training for each instance. Label smoothing is also
known to improve model calibration (Mller, Kornblith, and
Hinton 2019). Results are provided in Sec. 6.2.

Implementation details For cough classification, we use
the pretrained weights from the cough non-cough pretrain-
ing task to initialize the model. SGD is used as the opti-
mizer, with an initial learning rate of 0.001 and a decay of

0.95 after every 10 epochs. We use a batch size of 32 and
train for a total of 110 epochs. Label smoothing is randomly
applied between 0.1 and 0.3. Our model is implemented in
PyTorch (Paszke et al. 2019) (version 1.6.0) and trained us-
ing a single Tesla K80 GPU on the Linux operating system.
The same seed has been set for all our experiments (more
details can be found in suppl. material). We used Weights &
Biases (Biewald 2020) (version 0.9.1) for experiment track-
ing and visualisation.

4.4 Inference
Every cough sample is divided into 2-second segments us-
ing a sliding window with a hop length of 500ms. We take
the median over the softmax outputs for all the segments to
obtain the prediction for a single sample. We pad inputs less
than 2 seconds with zeros. A comparison of different aggre-
gation methods have been provided in suppl. material.

Individual-level aggregation For each individual in the
dataset, we have three cough samples. We consider the max
of the predicted probabilities of the three cough samples to
obtain the prediction for a single individual. All performance
metrics have been reported at the individual level.

5 Experimental Evaluation
5.1 Tasks
Although we train our model on the entire dataset once, we
focus on three clinically meaningful evaluations:

• Task 1: Distinguish individuals tested positive from indi-
viduals tested negative for COVID-19.

• Task 2: Distinguish individuals tested positive, from in-
dividuals tested negative for COVID-19, specifically for
individuals that do not report cough as a symptom. We
refer to this set as Asymptomatic (no C).

• Task 3: Distinguish individuals tested positive, from in-
dividuals tested negative for COVID-19, specifically for
individuals that do not report cough, fever or breathless-
ness as a symptom. We refer to this set as Asymptomatic
(no C/F/D).

The number of cough samples in the validation set for
each task are provided in Table 1. Fig. 7b shows the com-
parison in performance across the three tasks.

5.2 Triple-stratified cross-validation
In order to create a fair evaluation, we (1) create training and
validation sets from disjoint individuals, (2) we balance the
number of positive and negatives obtained from each facility



Task Positive Negative
(1) 87-102 108-117
(2) 57-75 78-105
(3) 45-66 69-93

Table 1: Dataset statistics per task. Number of cough sam-
ples in the validation set for each task. Since we perform 5-
fold validation, we show the range from min-max. Note that
the precise number of samples varies across folds as we se-
lect 10% of the total dataset but ensure that the validation set
is balanced per facility. Note that each individual has three
cough samples.

in the validation set, to ensure that we are not measuring a
facility specific bias, and (3) we upsample the minority class
samples per facility in the train set (facility-wise class dis-
tribution has been shown in Fig. 2). We split our dataset into
train and validation sets of approximately 90%:10% ratio,
and following standard practise for ML methods on small
datasets, perform 5-fold cross-validation.

5.3 Evaluation metrics
We report several standard evaluation metrics such as the
Receiver Operating Characteristic - Area Under Curve
(ROC-AUC), Specificity (1 - False Positive Rate (FPR)), and
Sensitivity (also known as True Positive Rate (TPR)). Since
this solution is meant to be used as a triaging tool, high sen-
sitivity is important. Hence, we report the best specificity
at 90% sensitivity. We report mean and standard deviation
across all 5 cross-validation folds. For fairness, all hyperpa-
rameters are set on the first fold and applied, as is, to other
folds, including epoch selection.

5.4 Comparison to shallow baselines
We also compare our CNN-based model to shallow clas-
sifiers using hand-crafted audio features. We experiment
with the following classifiers: (1) Logistic Regression (LR),
(2) Gradient Boosting Trees (3) Extreme Gradient Boosting
(XGBoost) and (4) Support Vector Machines (SVMs). As
input to the classifiers, we use a range of features such as the
tempo, RMS energy and MFCCs (see Sec. 4.1 from (Brown
et al. 2020) for an exhaustive list of the features used.) For
all methods, we follow the preprocessing design choices
adopted by (Brown et al. 2020). We optimize the hyperpa-
rameters following the same procedure outlined in 5.3.

5.5 Stacked ensemble
We ensemble the individual-level predictions from ResNet-
18 (both with and without label smoothing) and the XG-
Boost classifier (described in detail in Sec. 5.4) using
Stacked Regression (Van der Laan, Polley, and Hubbard
2007). The stacked regressor is a XGBoost classifier using
the predicted probabilities from each of the above models
as features. The hyperparameters for the regressor are men-
tioned in the suppl. material. We report performance with
and without the ensemble (Fig. 7a).

5.6 Ablation analysis
We also quantify the effect of several aspects of our train-
ing pipeline, notably - pretraining, label smoothing and the
length of the input segment. We experiment with two seg-
ment lengths - 1 second and 2 seconds. For the model trained
on 1-second input segments, we perform hyperparameter
tuning again. Results for all ablation analysis are provided
in Sec. 6.

6 Discussion
Fig. 6a shows that the CNN-based model outperforms all
shallow models by atleast 7% in terms of AUC. We also per-
form a statistical significance analysis of the results of our
model. We conduct a t-test with the Null Hypothesis that
there is no COVID-19 signature in the cough sounds and the
results were found to be statistically significant, p < 1e− 3,
95% confidence interval (CI) 0.61—0.83.

6.1 Effect of ensembling
It is widely known that ensembling diverse models can im-
prove performance, even if some models perform worse than
others individually (Sagi and Rokach 2018). Fig. 7a empir-
ically validates this for our task by showing that ensem-
bling the deep and shallow models improves performance
compared to any of the individual models. This also indi-
cates that there is further room for performance improve-
ment through better ensembling techniques and using more
diverse models.
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Figure 6: Ablation results. Comparison of ROC curves
across (a) different model families - ResNet-18 outperforms
other shallow baselines; (b) different segment lengths. 2-
second is found to be the optimal segment length

6.2 Effect of label smoothing
The effect of applying label smoothing has been reported
in Table 2. Besides improving AUC, label smoothing also
improves the specificity at 90% sensitivity. This shows that
at the required operating point (threshold on the softmax
scores) for a triaging tool, the model is able to classify better
with smoothened labels. This suggests that explicitly dealing
with label noise can improve performance. We also empiri-
cally verify that label smoothing improves model calibration
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tomatic individuals: C - cough, F - fever, D - dyspnea (short-
ness of breath). Our model is able to identify COVID-19
from the cough sounds of asymptomatic individuals as well.

(Mller, Kornblith, and Hinton 2019) as it drives the optimal
threshold for COVID-19 classification much closer to 0.5.

Model AUC Specificity Threshold
with LS 0.68 ± 0.07 0.31 ± 0.13 0.422 ± 0.062
no LS 0.65 ± 0.08 0.27 ± 0.11 0.002 ± 0.002

Table 2: Effect of label smoothing. Label smoothing im-
proves specificity at 90% sensitivity and model calibration.

6.3 Effect of pre-training
Table 3 shows the utility of using pretrained weights. Pre-
training improves the mean AUC by 17%, showing it’s im-
portance in dealing with small or medium sized datasets like
ours.

Model AUC
with pretraining 0.68 ± 0.07
no pretraining 0.51 ± 0.07

Table 3: Effect of pre-training. Pre-training greatly improves
model performance.

6.4 Optimal segment length
Fig. 6b indicates that using segments of 2-seconds performs
better than 1-second segments. We suspect that this happens
because our dataset contains several samples with silence
at the start and the end, increasing the probability of noisy
labels being assigned to random crops during training.

6.5 Asymptomatic individuals
Fig. 7b shows the performance for asymptomatics. We see
that while our model performs significantly better for symp-
tomatic individuals, performance for asymptomatic individ-
uals is still far above random. A t-test was conducted with

the Null Hypothesis that there is no COVID-19 signature in
the cough sounds of asymptomatic patients and the results
were found to be statistically significant, p < 1e− 2.

6.6 Performance across sex and location
While we note that our dataset contains more males than
females, there is no obvious bias in COVID-19 test results
(Fig. 2), and performance is similar for both male (0.71 ±
0.11) and female (0.72± 0.11) individuals.

Samples collected from different locations can have dif-
ferent label distributions. For example, testing facilities (F1,
F3 and F4) tend to have predominantly COVID-19 negatives
while isolation wards (F2) tends to contain COVID-19 pos-
itives (Fig. 2). Naively training a classifier on this combined
dataset would lead to significantly inflated performance be-
cause it could simply learn a location classifier instead of a
COVID-19 cough classifier. This is a known phenomenon in
deep learning and medical imaging (Badgeley et al. 2019)
(Wachinger et al. 2019). To address this issue, we carefully
constructed our validation set to contain only testing facili-
ties with equal number of positive and negative samples per
location. Future work will explore algorithmic mitigation by
applying techniques such as (Zhang, Lemoine, and Mitchell
2018).

7 Use Case: COVID-19 Triaging Tool
In India alone, as of the 21st of August, 2020, there have
been over 33M COVID19 RT-PCR tests performed (ICMR
2020). While the current testing capacity is 800k/day, the
test positivity rate (TPR) has been increasing at a steady
pace, indicating that there is an urgent need for testing to be
ramped up even further. The ability to ramp up tests, how-
ever, is significantly hindered by the limited supply of testing
kits and other operational requirements such as trained staff
and lab infrastructure. This has led to an increased urgency
for accurate, quick and non-invasive triaging, where individ-
uals most likely to be determined positive for COVID19 are
tested as a priority.

To address this, we propose a triaging tool that could be
used by both individuals and health care officials. We pick
the threshold of the model such that we have a high sensitiv-
ity of 90% which is desirable for a triaging tool. At this sen-
sitivity our best model has a specificity of 31%. As shown in
Fig. 1, such a model can be used to reliably detect COVID-
19 negative individuals while we refer the positives for a
confirmatory RT-PCR test. In this way, we increase the test-
ing capacity by 43% (a 1.43x lift) when we assume a dis-
ease prevalence of 5%. In Table 4, we also show the relative
gains at different prevalence levels. Precise calculations can
be found in the suppl. material.

8 Conclusion and Future Work
In this paper, we describe a non-invasive, machine learning
based triaging tool for COVID-19. We collect and curate
a large dataset of cough sounds with RT-PCR test results
for thousands of individuals, and show with statistical ev-
idence that our model can detect COVID-19 in the cough
sounds from our dataset, even for patients that are entirely



Prevalence Testing Capacity
1% +44%
5% +43%
10% +41%
30% +33%

Table 4: Utility of our triaging tool. We show the increase in
the effective testing capacity of a system at different disease
prevalence levels.

asymptomatic. At current model performance, our tool can
improve the testing capacity of a healthcare system by 43%.
Future work will involve incorporating other inputs from our
dataset to the model, including breathing sounds, voice sam-
ples and symptoms. Our data collection is ongoing, and sub-
sequent models will be trained on individuals beyond the
subset in this study. We will also explore fast and computa-
tionally efficient inference, to enable COVID-19 testing on
smartphones. This will enable large sections of the popula-
tion to self-screen, support proactive testing and allow con-
tinuous monitoring.
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A Data
A.1 Collection
Our data collection pipeline consists of the following stages:
(i) collection of individual specific meta data, (ii) recording
of audio samples and finally (iii) obtaining the results of the
COVID-19 RT-PCR test. We achieve this through three sep-
arate application interfaces as shown in Fig. 8. The details
of data collected through these apps are enlisted below:
• Personal and Demographic information: We collect the

individual’s name, mobile number, age, location (facility)
and self-reported biological sex.

• Health-related information: We collect the COVID-19
RT-PCR test result, body temperature and respiratory rate.
We also note the presence of symptoms like fever, cough,
shortness of breath and number of days since these symp-
toms first appear, and any measures undertaken specifi-
cally for cough relief. Finally, we also ask individuals if
they have any co-morbidities.

• Additional metadata: Additional data collected includes
location (name of the facility, City and State), travel his-
tory of the individual, information about contact with
confirmed COVID-19 cases, whether they are a health
worker, and information about habits such as smoking,
tobacco.

A.2 Preparation
Record linkage : Since we use three different apps to col-
lect data at different points in time, we need to link data
across all three for a single individual. We achieve this
through a semi-manual method that primarily uses fuzzy
matching of each individual’s name and phone number. Note
that this process is non-trivial to automate since there are in-
stances of wrongly entered texts, families sharing the same
phone number etc. After the correspondence matching, we
remove all identifiers from the dataset.

Manual validation : We manually validate each audio
recording to check for errors in data collection. Specifically,
for each cough, speech and breathing sample, we verify that
the required sounds are actually present in the audio (e.g.
cough sounds actually contain coughing). We only select the
entries that pass this manual validation stage to create our
usable dataset.

A.3 Splits for Cross Validation
Our dataset has a total of 1,039 individuals. We create 5 non-
overlapping folds such that the validation set in each fold
contains an equal number of positives and negatives from
each facility. As noted in Sec. 6.6. of the paper, samples col-
lected from different locations can have different label distri-
butions. For example, testing facilities (F1, F3 and F4) tend
to have predominantly COVID-19 negatives while isolation
wards (F2) tends to contain COVID-19 positives (Fig. 2). In
order to test that our model is not simply learning a facility
classifier, we carefully curate the validation sets. We only
consider data from the testing facilities F1 and F3 in the val-
idation set. We do not test on facility F4 because of the small
number of data samples obtained from this facility.
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(a) Enrollment app (b) Audio Recording app (c) Test result app

Figure 8: Application Interfaces used in data collection. Demographic, symptom and other health-related metadata are collected
through (a) Our Enrollment app. Audio recordings are collected through (b) the Recording app and RT-PCR test results are
uploaded for each patient using our (c) Test result app.

B Method
B.1 Reproducibility
We set the seed as 42 for all packages that involve any ran-
domness: PyTorch (torch.cuda.manual seed all,
torch.manual seed), random (random.seed) and
numpy (np.random.seed). This seed is set identically
across all experiments.

B.2 Inference
File-level aggregation Table 5 shows a comparison of var-
ious file-level aggregation methods (described in Sec. 4.4).
Note that these numbers are without individual-level aggre-
gation. Both median and mean perform equally well.

Individual-level aggregation Table. 5 shows the compar-
ison of various individual-level aggregation methods (Sec.
4.4) with our ResNet-18 based model. We empirically find
that max aggregation performs the best.

Method File-level Individual-level
min 0.62± 0.05 0.61± 0.07
median 0.64± 0.04 0.65± 0.07
mean 0.64± 0.05 0.65± 0.08
max 0.62± 0.03 0.68± 0.07

Table 5: Comparison of aggregation methods. For the file-
level aggregation, median and mean over segment predic-
tions seems to work equally well whereas for individual-
level aggregation, max over probabilities over individual
file-predictions works best.

Ensembling We tried two methods for ensembling:

• Ranking: Ensembling uncalibrated models might lead to
lower performance and since AUC doesn’t require the

predictions to be between 0 and 1, we rank the predictions
instead of using the actual predicted probabilities. This
gives us a minor performance lift from 0.680 to 0.686.

• Stacked Ensemble: As described in Sec. 5.5, we use
XGBoost on top of the predictions from 3 models to
improve the AUC from 0.68 to 0.72. The hyperpa-
rameters used for XGBoost are: max depth=10,
learning rate=0.1, n estimators=5000,
scale pos weight=4000/pos ratio,
min child weight=50, gamma=0.05,
reg lambda=100, where pos ratio = 0.1 is
the ratio of the number of positive samples to negative
samples. The description of these parameters are given
below:

– max depth: Maximum tree depth for base learners
– learning rate: Boosting learning rate
– n estimators: Number of gradient boosted trees.

Equivalent to number of boosting rounds
– scale pos weight: Balancing of positive and neg-

ative weights
– min child weight: Minimum sum of instance

weight (hessian) needed in a child
– gamma: Minimum loss reduction required to make a

further partition on a leaf node of the tree
– reg lambda: L2 regularization term on weights

The descriptions for the full list of parameters and their
default values can be found in the API documentation for
XGBoost 4.

4https://xgboost.readthedocs.io/en/latest/python/python api.html#module-
xgboost.sklearn



C Use Case: COVID-19 triaging tool
Computation of lift from prevalence The utility of our
method as a triaging tool for COVID-19 has been described
in Sec. 7. Here, we show the detailed calculations that we use
to obtain the numbers for Table 4. The lift in testing capacity
(L) is calculated as a function of the disease prevalence (ρ),
the sensitivity (Sn), and the specificity (Sp) of our model.

We use n to denote the population size, and TP , TN , FP
and FN to denote true positives, true negatives, false posi-
tives and false negatives respectively. We propose a triaging
mechanism wherein only individuals that are deemed posi-
tive from our model are sent for RT-PCR tests (Fig. 1, main
paper). Hence all negatives from our model (which can be
both true negatives TN or false negatives FN ) are not tested
by RT-PCR. The number of false negatives from our model
at the operating point we select (high sensitivity (90%)) is
extremely low.

Given we are not testing negatives, the effective increase
(or lift) in testing capacity becomes

L =
n

n− (TN + FN)

It is trivial to show that

TN = Sp(1− ρ)n; FN = ρn(1− Sn)

Thus, we obtain the lift

L =
1

[1− ((1− ρ)Sp) + ρ(1− Sn)]


	1 Introduction
	2 Motivation and Related Work
	3 Data
	3.1 COVID-19 cough dataset
	3.2 Open-source non-COVID cough datasets

	4 Method
	4.1 Input
	4.2 CNN architecture
	4.3 Training strategies
	4.4 Inference

	5 Experimental Evaluation
	5.1 Tasks
	5.2 Triple-stratified cross-validation
	5.3 Evaluation metrics
	5.4 Comparison to shallow baselines
	5.5 Stacked ensemble
	5.6 Ablation analysis

	6 Discussion
	6.1 Effect of ensembling
	6.2 Effect of label smoothing
	6.3 Effect of pre-training
	6.4 Optimal segment length
	6.5 Asymptomatic individuals
	6.6 Performance across sex and location

	7 Use Case: COVID-19 Triaging Tool
	8 Conclusion and Future Work
	9 Acknowledgments
	A Data
	A.1 Collection
	A.2 Preparation
	A.3 Splits for Cross Validation

	B Method
	B.1 Reproducibility
	B.2 Inference

	C Use Case: COVID-19 triaging tool

