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Figure 1: Pesticide spray recommendation from pest trap images using AI. We introduce an AI-based method for pest monitoring
that is geared towards smallholder farmers. Using photos of pest traps in the field, the system provides a recommendation on whether to
spray pesticide. This paper outlines that system along with the lessons learned during its deployment in the context of global development.

ABSTRACT
Nearly 100 million families across the world rely on cotton farming
for their livelihood. Cotton is particularly vulnerable to pest attacks,
leading to overuse of pesticides, lost income for farmers, and in
some cases farmer suicides. We address this problem by presenting
a new solution for pesticide management that uses deep learn-
ing, smartphone cameras, inexpensive pest traps, existing digital
pipelines, and agricultural extension-worker programs. Although
generic, the platform is specifically designed to assist smallholder
farmers in the developing world. In addition to outlining the solu-
tion, we consider the set of unique constraints this context places
on it: data diversity, annotation challenges, shortcomings with tra-
ditional evaluation metrics, computing on low-resource devices,
and deployment through intermediaries. This paper summarizes
key lessons learned while developing and deploying the proposed
solution. Such lessons may be applicable to other teams interested
in building AI solutions for global development.
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1 INTRODUCTION
Nearly 100 million families across the world rely on cotton farming
for their livelihood.1 A large percentage of these families consist
of smallholder farmers in developing countries. For these farmers,
one of the most significant impediments to a successful season is
mismanagement of pest infestation. Pest attacks not only cause crop
loss, but can push farmers already fighting poverty into despair.
After a pest attack in late 2017, for example, observers attributed a
spike in farmer suicides in part to a widespread pest attack [16].

This paper describes an effort to address this problem in the
context of challenges unique to the Global South, using deep learn-
ing, smartphone cameras, inexpensive pest traps, existing digital
pipelines, and agricultural extension-worker programs. As outlined
in Figure 1, our system uses an object-detection system trained to
1Pesticide Action Network UK
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identify and count pests caught in traps placed throughout a field.
Using this count, it classifies the level of infestation and provides a
recommendation on how to proceed. The system was developed
and tested with farmers and farm extension workers throughout
three cotton seasons across two different geographies in India.

What makes this problem unique are the challenges imposed
by the settings in which this solution is intended to operate. The
seasonal nature of cotton farming, for example, not only constrains
data access, but contributes to its diversity. Pest occurrences in
the field are markedly different from those in a lab setting. This
in turn makes annotation difficult as it changes the landscape for
domain experts responsible for establishing ground truth. Evalua-
tion can also be a challenge when classical metrics used to judge
machine learning models fail to completely align with what success
means for the end-user. Finally, operating in a low-resource envi-
ronment brings constraints around compute resources and network
connectivity.

The contributions of this paper are twofold: 1) introducing a
new approach for trap-based pest management using deep learning,
tailored toward real-world constraints common throughout the
Global South, and 2) outlining lessons learned from developing and
deploying the approach for smallholder farmers. This work sits at
the intersection of applied AI research and global development. We
hope the insights here can be of use to other researchers looking to
work in this emerging domain.

Section 2 begins by defining and motivating the problem, and
detailing the related work. Section 3 motivates the solution by
describing the unique challenges in solving it; from data collection,
to algorithmic development, to deployment pathways. Section 4
details our approach to a few of the more technical challenges
previously presented. Section 5 outlines some of the lessons learned
throughout this process. Section 6 concludes the paper and offers
future directions.

2 BACKGROUND
2.1 The Farmer’s context
2.1.1 Pests: Both pink and American bollworms have been a long-
standing nuisance for cotton farmers. Bollworms lay eggs that are
difficult to detect and within a few days develop into larvae that
can be difficult to manage. These larvae make their way into the
cotton boll where they do irreparable damage to the crop.

2.1.2 Pesticides: Pesticides are a common intervention against
bollworms. Knowing when to apply pesticides however, can be a
difficult decision. Applying too soon can kill pests that are beneficial
to a field’s ecosystem, leaving it more susceptible to attack than
it was before the spray. Spraying too late has the potential to be a
wasted effort, as pest growth can exceed a level that is economically
sensible to address. It is thus common to take a cautious approach
and spray too frequently, something that is not only expensive, but
environmentally hazardous, and potentially toxic [14].

2.1.3 Traps: Pheromone traps (Figure 2) are a tool that can be
used as an early warning system to address this uncertainty. A
lure within the trap attracts adult male bollworms during their
mating period. The number of bollworms captured is then used
as a proxy for larvae inception, and subsequently as an indicator

Figure 2: Description of a
pheromone trap. A pheromone
trap is mounted to a post using its
firm top. Bollworm moths enter
the trap through the top, becoming
trapped in the plastic bag that
hangs below it. The contents can
be emptied by untying the bottom
of the bag. A pheromone lure
hangs from the top (shown in red),
which attracts the bollworms to the
structure.

for whether action is required to stunt larvae development. To be
used correctly, traps must be emptied at regular intervals and their
counts accurately interpreted as measures of infestation; knowing,
for example, that finding a few pests is acceptable, but that finding
a dozen is not.

2.1.4 Extension workers: To assist with trap interpretation, farmers
receive guidance from farm extension workers—representatives
of larger programs with mandates to improve farmer livelihoods.
Workers visit farms at a regular cadence, where part of their job is
to observe and report trap catch. These observations are aggregated
at a central authority, which then provides recommendations on
whether to take action. This cycle is not only slow, but is susceptible
to human error as identifying the correct pest class for an untrained
person is a challenging task in itself.

2.1.5 The opportunity: It has been reported that proper interven-
tion can increase a farmer’s income by as much as 26 percent [29].
This has motivated several efforts at educating farmers on best
practices around pest management. These systems, however, can
be difficult for smallholder farmers to follow and maintain [15].
Instead, it is common for farmers to rely on external advice for
guidance. We perceived an opportunity to support that guidance
using AI, and to deploy such a solution at scale.

The problem was thus to provide accurate and localized assis-
tance to farmers and extension workers in interpreting trap con-
tents. What was encouraging was that the problem seemingly had
an AI solution: contents of the trap essentially required recogni-
tion and counting. Equally as important was that the agricultural
extension program had a preexisting network of farmers in the
region; and that such extension programs are common in devel-
oping countries around the world where smallholder farming is
the norm. Finally, the program had a working relationship with
a software vendor, who had developed a smartphone application
for basic farm-related data collection that was already in use by a
wide range of farmers. Plugging into such a digital pipeline pro-
vides a natural pathway to scale. These three components—an AI
solution, a programmatic partner, and the existence of a digital
pipeline—motivated us to work on this problem.

2.2 Related work
2.2.1 AI-based pest detection. There have been several efforts to
apply machine learning and artificial intelligence to pest detection.
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Figure 3: Example of our annotation. Pink bollworms from a
pheromone trap annotated with bounding boxes.

One class of approaches has focused on plant leaf characteristics for
signs of damage [21, 23, 24] (see Prajapati et al. [22] for a review).
Pest traps provide an opportunity to recognize infestation problems
before signs of leaf damage arise; something particularly impor-
tant for managing bollworms. There have been efforts focused on
pheromone traps, however, these require special hardware to obtain
images [6, 28] whereas our system can work on images captured
simply from smartphone cameras.

Recent work that has applied object detection to pest recognition
has utilized two-stage methods, empirically showing them to be
more accurate than one-stage methods [9, 25, 26, 31]. However,
they have also found them to be slower: in comparison to their best-
performing two-stage system, Liu et al. [9] found that a one-stage
approach decreased inference time by approximately 90 percent.
Given our compute constraints, a one-stage approach was thus de-
sirable. Other efforts that have proposed such approaches were Ding
and Taylor [2], who developed an architecture based on LeNet [7],
and Nam and Hung [20], who found SSD to be the best performing
system in their context. While these efforts focus on the object
detection algorithm, we propose an end-to-end framework based
on multi-task learning where object detection is one of the tasks.

2.2.2 Deployment lessons. This paper follows a line of work detail-
ing lessons learned from actual deployments of end-to-end machine
learning systems. Haldar et al. [3], for example, describe the pro-
cess by which an existing search platform was shifted to a deep
learning model; Alibaba and eBay describe their techniques for
implementing visual search (Zhang et al. [35] and Yang et al. [34],
respectively); and Liu et al. [10] detail their approach to developing,
deploying, and maintaining an employer name normalization task.
These efforts are interesting not only for their technical contri-
butions, but also because they have been deployed for real-world
applications. However, these systems were not tailored to operate
in the developing world, allowing many of the lessons presented in
our work to be fresh perspectives.

There have been similar field study papers within the technology
for development community [1, 18]. Although these efforts have
not been AI-centered, our work has several shared experiences. Of

particular note is the importance of on-ground partnerships for
deployment.

2.2.3 AI for global development. Machine learning and AI have
begun to find their way into the information and communication
technologies and development (ICTD) community [5, 13, 30]. Much
of the work in these areas has focused on controlled studies of
usability, or proof of concepts, rather than long term deployments.
In contrast, our solution was developed and deployed over three
cotton seasons in two different geographies.

3 PROPOSED SOLUTION
Our approach to the problem was to use deep learning for iden-
tifying and counting pests emptied from the trap onto a sheet of
paper. The count was then used to identify the infestation level
and provide pesticide usage recommendations based on rules set
by entomologists. These recommendations included: (1) no spray
required; (2) no spray required now, but potentially required soon;
and (3) spraying is strongly suggested. The solution was distributed
through extension programs by plugging into existing technology
platforms in their workflow.

3.1 Unique challenges
A key aspect of the proposed solution is the set of challenges that
the context of the developing world imposes on it. We list them
briefly below to contextualize the solution, then elaborate on some
of them in Section 4.

Annotation: We relied on expert entomologists to assist with
pest annotation. These experts were accustomed to high-resolution
images of live insects. Our data consisted of pest images of much
lower resolution, with many body parts withered off during empty-
ing of the trap. This made it hard for them to correctly identify the
pest class.

Data diversity: Our solution collects and analyzes data from a
variety of users. Each user had different tendencies in how they
empty the trap—how the pests are distributed, and how much extra-
neous material they include. Also, pests themselves exhibit different
anatomies depending on their agro-climatic zones. These factors
contribute to a diverse set of data.

Custommetrics: The foundation of our solution is object detec-
tion, where the common measure of model performance is average
precision (AP) per class at a given bounding box overlap cutoff.
Farmers, however, are not only impacted when our solution is right,
but also when our solution is wrong. The relationship between
AP and farmer benefit is therefore not straightforward, as false
positives and false negatives are equally important.

Deployment through intermediaries: We worked with sev-
eral partners in various aspects of the development and deployment
process; namely farming extension programs and software part-
ners who provided digital services to these extension programs.
While these partners provide an avenue for deployment and scale,
they also increase the cost of experimentation. Making system-level
changes, even in sandboxes, has implications for their workflow
and their reputation. These constraints also have ramifications for
our system design. Things like the memory footprint of our mod-
els, for example, must be mindful of our software partner’s overall
footprint.
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Figure 4: Architectural framework. An input image goes through the shared base network to produce a convolutional feature map that is
fed into two branches: one for detection and one for image validation. If the validation branch predicts the image as non-trap, the user is
asked to retake the photo; otherwise the detection head presents the bounding box predictions and the counts of the detected pests. Counts
are used to make the final spray recommendation based on the action thresholds set by entomologists.

Table 1: Data description. Summary of our data collection ef-
fort, compartmentalized by phase and split. All data collected from
Phase 3 was used as a test set.

Phase 1 Phase 2 Phase 3
Split Class Pics Pests Pics Pests Pics Pests
Train pbw 668 14222 232 111

abw 1307 8600 217 277
Val. pbw 90 1978 23 21

abw 157 1042 33 50
Test pbw 87 1642 28 18 660 2163

abw 160 1089 29 36
Total 2469 28573 562 513 660 2163

Compute in low-resource settings: Many smallholder farms
in India are located in remote areas, with inconsistent network
coverage. This necessitates the ability to do as much on-device
compute as possible, including model inference.

Seasonality and uncertainty: Cotton being a seasonal crop
means that data collection and field evaluation have specific narrow
windows of time in which they can be conducted. Additionally,
whether there is a pest attack, and how strong such an attack
may be, are highly variable. These factors mean development and
programmatic timelines must be fluid and amenable to uncertainty.

Lack of digital literacy: Digital literacy levels vary widely,
with multiple dimensions within that variance. Some users, for
instance, are completely comfortable with certain interfaces, yet
they are unaware of, or completely ignorant to, usage methods
outside of that established pattern. This puts a premium on interface
design and inference interpretability.

Lack of natural feedback loops: Financial metrics provide
vital feedback for the deployment of AI solutions in commercial
settings. Analogous feedback loops of similar reliability do not
naturally exist in global development. For example, obtaining feed-
back on the impact of our solution on farmers requires an impact
assessment mechanism to be established.

3.2 Data
For many tasks, there are either pre-existing datasets, or surrogate
datasets sufficiently close to the expected distribution, on which
initial models can be quickly developed. For our problem that was
not the case. While several datasets have been presented in the
academic community, those datasets are either proprietary [2, 12,
20, 32] or are too far from ground reality to be valuable in our set-
ting [17, 31, 33]. We thus had to build a dataset from scratch. Such
an effort should be seen as the norm, and not the exception, when
building any machine learning solution for the developing world.
This effort was made more difficult due to the seasonal nature of
cotton farming. In India, cotton is commonly grown between Sep-
tember and January, the kharif season. Although it is also grown
between March and May, the summer season, the number of re-
gions in which this takes place is far less. Finally, irrespective of
season, pest frequency is highly variable, limiting the number of
opportunities to collect data and to conduct field experiments.

Data collection took place in several phases over three cotton
seasons across two geographies for two pests types—pink (pbw)
and American (abw) bollworms. Table 1 presents a summary of
this collection effort, factored by phase, pest class, and dataset split.
Within this paper, models and subsequent results were derived
from data within the highlighted cells. Specifically, models were
trained using both bollworm types, but evaluation was performed
only on pink bollworms. This decision was made in part to simplify
presentation of our analysis. The collection process in each phase
is described below.

3.2.1 Phase 1: Controlled data collection. The first phase of col-
lection took place during the 2018 kharif season in Wardha (Ma-
harashtra, India). A partner organization with expertise in cotton
farming was engaged. This organization had a long-standing rela-
tionship with farmers in the area through their extension workers,
as well as a cadence of visiting farms every alternate day. In addition
to their existing field work, the workers were asked to maintain
and take photos of pheromone trap contents by emptying the con-
tents of the trap onto a plain white sheet of paper (Figure 3). They
were then instructed to take a photo of the sheet using Open Data
Kit (odk) [4].
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Figure 5: Pest variety. Variety in occurence of pink bollworms in
our data, where features like scales, wings, and eyes of the same
pest tend to wither off as they are emptied from the trap. The
resolution of these pest images are also much lower compared to
high resolution images used in previous studies and found on the
internet, with which entomologists are more familiar. This poses a
challenge not only for detection, but also for annotation.

3.2.2 Phase 2: Changing regions. The second phase of collection
was conducted during the 2019 summer cotton season in Nannilam
(Tamil Nadu, India). Unlike the previous season, data collectors
were not tied to an organized extension program. Instead, they
were identified and managed through a partnership with a lead
farmer in the area. Data collectors were not farmers, but had basic
knowledge of farming practices. Similar to Phase 1, odk was used
for image capture.

3.2.3 Phase 3: collection via deployment. The third phase of collec-
tion took place during the 2019 kharif season in Wardha. Rather
than being a season devoted entirely to data collection, the objective
was to test an early version of the solution and to do so with a wider
audience. The extension workers who were a part of the outreach
organization enlisted during Phase 1 served as the primary data
collectors.

Across all phases, data collectors were asked not to engage the
flash and to ensure bollworms were in focus. They were asked
to remove extraneous objects like dirt and to avoid clumping by
distributing the pests, but these requirements were not strictly
enforced.

3.3 Model framework
3.3.1 Object detection. The majority of contemporary object de-
tection systems can be broadly divided into two classes. Two-stage
detectors first generate a series of proposals, then refine those pro-
posals to come up with the final estimates. Single-stage detectors es-
chew the proposal generation step, directly predicting a fixed num-
ber of boxes in a single forward pass. In the context of pest recog-
nition, single-stage detectors have been shown to reduce inference
time by approximately 90 percent compared to most two-stage de-
tectors [9]. Because such performance is paramount to the broader
user experience, we decided to use a one-stage approach. Specifi-
cally, SSD was selected because it was well-established within the
detection community, and was a good performer on pests [20].

3.3.2 Image validation. During data collection and field deploy-
ment it was common for users to submit images that did not contain

trap-catch. It was clear that an end-to-end pipeline would also need
image validation to reject outliers. To solve this problem we trained
a standard image classification network [27] on a collection of
non-bollworm images. This collection included images from the
Common Objects in Context (COCO) dataset [8], along with leaf im-
ages and images of different types of pest traps collected during the
three phases. The model was trained to provide a binary indication
of whether the given image was of pheromone trap catch.

3.3.3 Multi-task learning. Because the image validation compo-
nent and the SSD model utilized the same base network, there was
an opportunity to combine the two architectures to simplify our
deployment pipeline. This was accomplished by using the last layer
of the base network in SSD and adding a new branch for image
validation consisting of two convolutional layers, followed by an
adaptive max-pool and fully-connected layers. The architecture
of the image validation branch is similar to Simonyan and Zisser-
man [27]. During inference, the output of the detection branch is
used only if the classification branch classifies the input image as a
pheromone trap.

This network (Figure 4) was trained in a multi-task learning
framework. The loss function was as follows:

𝐿𝑠𝑠𝑑 = 𝐿𝑐𝑜𝑛𝑓 + 𝛼𝐿𝑙𝑜𝑐 (1)
𝐿 = 𝐿𝑠𝑠𝑑 + 𝛽𝐿𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 (2)

where 𝛼 and 𝛽 were set to one. Equation 1 is the MultiBox loss,
a combination of confidence (𝐿𝑐𝑜𝑛𝑓 ) and localization (𝐿𝑙𝑜𝑐 ) losses,
introduced by Liu et al. [11]. 𝐿𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 is the cross-entropy loss
over two classes (trap versus non-trap).

3.3.4 Evaluation. The traditional way of evaluating object detec-
tion networks, average precision (AP) per class, was found to be
suboptimal for our task (Section 4.3). As previously mentioned,
we provide one of three recommendations to the user, only one
of which involves spraying. We combine the other two into a sin-
gle class and treat the task as a two-class problem. Missed alarm
rate (MA) is the percentage of cases where the recommendation
should have been to spray, but the system suggested otherwise.
False alarm rate (FA) is the percentage of cases where no action
should have been taken, but the system suggested spraying. Missed
alarm rate and false alarm rate are equivalent to the false negative
rate and the false positive rate, respectively. We chose to refer to
them as MA and FA for communicating our results to relevant
stakeholders who found false positives and false negatives difficult
to quickly disentangle. Our system achieves 1.9 percent false alarm
and 27.2 percent missed alarm rates.

3.4 Deployment
We initially developed an in-house mobile application that was
distributed to extension workers and farmers through our agricul-
tural program partners. We later integrated our application into
that of a technology partner to the extension worker organization.
The longstanding relationship between these two organizations
provided us a clearer path to scale. System integration involved
creating web services to communicate with our models. However,
after compressing our models to work on the phone, integration
through a software development kit (SDK) is also possible.
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Table 2: Ambiguity of optimal threshold across phases. Perfor-
mance of confidence thresholds optimized separately on Phase 1 and
Phase 2 validation sets (rows) across all validation sets (columns).

Phase 1 Phase 2 Phase 1+2
Conf. MA FA MA FA MA FA

Phase 1 0.2 0.00 5.41 - 8.70 0.00 6.67
Phase 2 0.7 49.06 0.00 - 0.00 49.06 0.00

4 ANALYSIS OF CHALLENGES
4.1 Annotation
4.1.1 Motivation. Image annotation involved drawing bounding
boxes around the bollworms. Figure 3 provides an example. To gain
first-hand knowledge of the problem domain, initial annotation
was completed informally by the authors on a subset of images.
This was done under periodic guidance from expert entomologists
within the extension firm engaged in Phase 1 and 3. The difficulty of
this process was that entomologists had little experience examining
mobile phone images of post-catch bollworms. They were instead
more accustomed to high-resolution images used more commonly
in their previous studies. Our data (Figure 5) consists of pest images
with much lower resolution, making it hard to correctly identify
the pest class. Also, many of the features readily apparent on live or
freshly caught bollworms had degraded in our set. Distinguishing
features such as body scales, wings, and eyes were not discernible
due to conditions within the trap and time to photograph. Finally,
pests were often clumped together making it hard to establish clear
boundaries between instances. Coupled with poor photo quality
either due to human error or lighting conditions, these factors made
accurate annotation a non-trivial task, even for experts.

4.1.2 Solution. An annotation firm was later engaged that pro-
duced single sets of annotations per image. However, to address the
problems just mentioned, we performed regular rounds of annota-
tor agreement. Instead of producing a single set, the firm was asked
to produce several independent sets of judgements per annotator.
We would also participate by individually annotating the same set
of images. We used the results not only to ascertain the quality of
the firm, but to gauge the difficulty of the task itself by quantify-
ing mismatch both internally and externally. Typically, annotator
agreement is undertaken to sharpen an annotator set. Knowing the
difficulty of the task for the experts, however, helped us maintain a
more open attitude towards agreement performance.

4.2 Data diversity
4.2.1 Motivation. Machine learning models have a better chance
of performing well if the data captured during deployment comes
from a similar distribution to that on which they were trained.
This is a difficult property to maintain in our setting, where there
are several sources of heterogeneity. Cotton fields are present in
a variety of agro-climatic zones, each having an impact on the
etymology of a pest. Due to the nature of human input, images also
exhibit various spatial distributions of pests, as well as a variety of
non-pest material present in the trap.

Table 3: Estimating important correlates for relevant met-
rics. Pearson correlation coefficients between aggregate measures
and model performance. Values are derived using a box confidence
threshold of 0.2. Highlighed values are significant at 𝑝 < 0.05.

AP False Alarms Correct Action
Measure Corr. 𝑝-value Corr. 𝑝-value Corr. 𝑝-value
Count 0.35 0.00 -0.01 0.97 0.13 0.21
Size -0.14 0.18 -0.01 0.93 -0.07 0.51
Spread 0.29 0.00 0.29 0.05 -0.14 0.15

(a) Number of pests per image. Inset is a zoom of the Phase 2 and 3 distributions.

(b) Pest density: median number of pixels between pests, per image

Figure 6: Image-level characteristics. Descriptive characteristics
of the pest data set across phases. Figure 6a plots the PDFs of the
count per image for all phases. Although the distribution for Phase 3
might appear to seem close to Phase 2, on closer inspection, it is
clear that that is not the case. Figure 6b indicates that the PDF of
the density for Phase 3 matches that of Phase 1 closely.

Given that Phase 3 was deployment focused, there was a require-
ment to decide the best-performing model before its start. To do this
we trained a model on the combined Phase 1 and Phase 2 training
sets. For validation, we used the Phase 1 and Phase 2 sets separately
and in conjunction via a third set consisting of their union. The
optimal confidence threshold for each phase differed to the extent
that there was no clear choice as to which was the most informative
candidate (Table 2). This section focuses on the heterogeneity in
our data as a means of reasoning about this mismatch. Using data
from Phase 1 and 2 in comparison to, and in conjunction with, data
from Phase 3, we discern characteristics of the distributions of each
dataset and ascertain their importance for future deployments.

4.2.2 Solution. Our approach involved analyzing measurements
derived from annotated bounding boxes of pests; specifically, pest
count, pest size, and pest density. Pest size is the area of a bounding
box relative to that of the parent image. It is aggregated per image
by taking the mean across pest sizes for that image. Pest density per
image is the median distance between the center coordinates of all
pests in that image.
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Figure 7: Pest-level characteristics. Probability density functions
of the cosine similarity between latent representations of pests in
Phase 3 with pests in Phase 1 and 2.

We first understand the relationship between these measures
and model performance using a combined Phase 1 and 2 valida-
tion set. Table 3 presents Pearson correlation coefficients between
image annotation metrics, and model performance scores. Signifi-
cant correlations were found between AP and the measurements of
count and density. False alarms were also found to be significantly
correlated to density. Keeping these specific relationships in mind,
we bring in Phase 3 data and study how the measurement distribu-
tions compare. Figure 6 presents a visualization. The pest count of
Phase 3 seems closer to that of Phase 2 than to Phase 1. Detailed ex-
amination however reveals that the distribution is different. Phase 3
pest density not only resembles that found in Phase 1, but it does
so quite closely. Combined with our knowledge of measurement
importance, had these distributional relationships been identified
earlier we would have had more faith in our decision to use the
Phase 1 confidence threshold during the season.

Whereas annotation characteristics are derived from the bound-
ing box, image characteristics are derived from the actual image
contained within that bounding box. Each pest is first cropped
from its image using its bounding box coordinates. Crops are then
size-normalized and used to train a fully connected autoencoder to
learn a latent representation. The network was trained using crops
from Phase 1 and 2. Once complete, it was used to calculate repre-
sentations of crops from Phase 3. The cosine similarity was taken
between each representation from Phase 3 and representations
from Phase 1 and Phase 2, respectively. The maximum similarity
score was then kept for each image pair. The result was thus two
maximum scores, one with respect to Phase 1 and another with
respect to Phase 2, for each image in Phase 3. Figure 7 visualizes
the two probability density functions. On average, pests in Phase 3
were more similar to those in Phase 1 (mean similarity 0.97) than
they were to those in Phase 2 (mean similarity 0.92). A 𝑡-test was
conducted to compare these distributions and their difference was
found to be significant, 𝑡 (12724.8) = 116.88, 𝑝 < 1𝑒 − 99.

4.3 Choice of evaluation metrics
4.3.1 Motivation. Because smallholder farmers are often cash sen-
sitive, false positives and false negatives from a decision support
system can have an outsized impact on their livelihood. In this
context, a false positive means recommending a pesticide interven-
tion that may not be necessary, leading to over-spraying. A false
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Figure 8: Effect of metrics on optimal threshold. Change in
performance on the validation set across various metrics and box
confidence thresholds. Optimizing for AP, the commonly used met-
ric in object detection, can give a very different threshold compared
to optimizing for correct action.

Table 4: Test performance across thresholds. Performance on
Phase 3 test data using confidence thresholds proposed during
validation.

False Alarms (N=627) Missed Alarms (N=33)
Thresh. Mean SD Mean SD
0.0 98.4% 0.13 0.0% 0.00
0.2 1.9% 0.14 27.2% 0.45
0.4 0.2% 0.04 66.7% 0.47

negative means a farmer may not take action when they actually
should.

Deciding to move a model into production after only evaluat-
ing it with traditional performance metrics runs the risk of being
disconnected from ground reality. The common measure of model
performance in object detection, the foundation of our solution, is
average precision (AP) per class at a given bounding box overlap
cutoff; AP at IOU 0.5, for example, where IOU is the intersection
of two boxes divided by their union. The relationship between
this measurement and the ultimate farmer utility is not one-to-
one. This section quantifies that phenomenon and outlines relevant
alternatives.

4.3.2 Solution. The detection head described in Section 3.3 outputs
200 box predictions for each class. A confidence threshold is applied
on the predictions for each class to return the final detections. To
evaluate the difference between metrics, we look at optimal model
thresholds based on the performance of our validation set using
various metrics. Along with AP, missed alarm rate, and false alarm
rate, we introduce two additional measurements: mean absolute
error (MAE), which is the absolute value of the difference between
the inferred and actual counts; and correct action, which combines
MA and FA, being true when either FA or MA are false.

A model was trained using the combined training set from
Phase 1 and 2 (Table 1). The confidence threshold was then it-
eratively changed from 0 to 1 in steps of 0.1. At each step, the model
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was evaluated using the combined validation set from the same
two phases. Figure 8 plots this iterative evaluation for the metrics
outlined. From this experiment, a model based on the performance
of AP would use a threshold value of zero, while other metrics
suggest otherwise. Table 4 presents how these thresholds perform
on Phase 3 test data focusing on the farmer-centric evaluation met-
rics. By definition, an image can only be in one of the two alarm
categories. Thus, the means presented in Table 4 are over images
in their respective categories, where category size is denoted “N”.
While the AP inspired threshold minimized the propensity of false
alarms, it was unable to mitigate missed alarms.

4.4 Compute in low-resource settings
4.4.1 Motivation. Compute resources are largely constrained by
two factors. The first is mobile network coverage. Many small-
holder farms in India are located in areas that are poorly connected.
Relying too heavily on upload or download capability in these con-
ditions can hamper user experience. The second constraint comes
from integrating products into partner interfaces. Solutions need to
be mindful of their existing size and quality of service guarantees.
Evidence of these challenges was seen during our Phase 2 data
collection effort, during which part of the season was used to test
the end-to-end application. Our solution was placed on 17 phones
that belonged to a mix of extension workers and lead farmers. The
experiment ran for 60 days across 25 farms, providing 89 recom-
mendations based on pink bollworm catch. The average per image
upload time was approximately 38.5 seconds (95% CI [33.6, 43.3]),
which represented 48 percent of task completion time. For users,
this was especially problematic in cases where they had network
connectivity in a location different from where they took the photo.
In these conditions, an additional travel component was required
to complete the task. This inconvenience was exacerbated in cases
where a retake was required: a farmer would take a photo in the
field, walk to an area with connectivity to perform the upload, then
be forced to walk back into the field for a retake upon learning
the image was invalid. In addition to the log analysis, qualitative
follow-ups showed that these upload times would be a barrier to
adoption.

4.4.2 Solution. To get compute closer to the field and mitigate
network usage, we ported our multi-task network onto the phone.
We first established a target model size by examining the size of
our partner’s app, and by understanding the general sizes of other
agri-tech apps—between 15 and 20 MB generally. We decided that a
model size of 5MB would be a good target. Getting to this size was
essentially an exercise in model compression. We adopted a version
of filter-level pruning known as iterative pruning, specifically using
the technique developed by Molchanov et al. [19]. The idea was
to iteratively prune a fixed number of filters followed by training
the pruned model. Molchanov et al. [19] introduced this technique
for image classification networks. We adapted this technique for
our multi-task model, which consisted of both a detection head
and a classification head. We pruned 1024 filters in each pruning
iteration, followed by 30 epochs of training, until 80 percent of
the total number of filters in the original model were pruned. The
weights of the final pruned model were saved in half-precision to
further reduce the memory footprint on disk.
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Figure 9: Pruning progress. Change in the memory footprint
and the number of multiply accumulate operations (MACs) of the
compressed model, along with a corresponding performance met-
ric (MAE), during the lifecycle of iterative pruning.

Figure 9 details this effort. Iteration zero represents the original,
unmodified model described in Section 3.3; its size after quantiza-
tion was approximately 132 MB. Subsequent iterations came after
a round of pruning. The required model size was reached after 15
iterations, where the model performance (MAE) went from 0.91
to 1.02. In addition to a reduction in size, the compressed model
was also less compute-intensive, as seen from the drop in multiply-
accumulate operations (MACs).

5 LESSONS LEARNED
Train the expert: Annotation is a critical component of building
an AI-based solution. In the context of the developing world, it is
not unlikely that even domain experts may not be able to provide
accurate annotations because of lack of exposure to the reality on
the field. This can therefore lead to a two-way learning process
where the expert might themselves need additional training.

Sample before deployment: As we continue to deploy our
solution to new regions, we anticipate needing to make model
decisions with incomplete information. Specifically, diversity in
data is always going to be a factor whenever scale is concerned.
One of the most common ways of dealing with this is by simply
deploying the system and relying on online training to refine the
model. This can have negative consequences if the test distribution
is different from the train distribution, something that is problematic
in cost-sensitive settings such as ours. Therefore, especially during
the early stage of a project, an alternative is to collect a sample of the
data before deployment, to understand which subset of training data
matches the expected distribution, and take decisions accordingly.

Customize metrics: Although there might be well-established
evaluation metrics for a given machine learning method being used
to address a given problem, it does not necessarily imply that those
metrics capture the end goal of the solution. It is important to
keep this in mind while deciding which metrics to optimize. Where
appropriate, custom metrics that do capture user needs may be
required.

Infer offline: When building tools for the developing world,
or even many rural settings, network connectivity should not be
taken for granted. Our approach has been to do as much compute
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offline as possible by compressing our model to a suitable size for a
phone. It is important to quantify that need early on, setting the
right expectations with stakeholders regarding latency, model size,
and accuracy. Offline inference also allows better management of
data privacy as the solution scales because there is finer control of
what user data leaves the phone.

6 CONCLUSION
This paper presents a new technical approach for trap-based pest
management using AI. The solution requires only a mobile phone
camera, readily available pest traps, and works in areas without
connectivity. It lays the groundwork for providing accessible, im-
mediate, and actionable advice to farmers. The lessons outlined in
this paper, a result of several seasons of on-ground experience, shed
light on what can be expected when building AI-based solutions
for the developing world.

During our deployments, we have found that users not only want
suggestions, but also want to understand why those suggestions
were made. Future work includes exploring explainability tech-
niques to address this concern. Bollworms are just one of dozens of
pests that are active on cotton farms. Immediate future work is to
replicate parts of this effort to address those. Further, pest count is
one of a myriad of factors that can be considered for spray decisions.
Being able to take those factors into account simultaneously may
strengthen our predictions. Finally, a controlled study would allow
us to put this work into the broader farming context.
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