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Abstract—We take an information-theoretic approach to iden-
tify nonlinear feature redundancies in unsupervised learning.
We define a subset of features as sufficiently-informative when
the joint entropy of all the input features equals to that of
the chosen subset. We argue that the rest of the features are
redundant as all the accessible information about the data can
be captured from sufficiently-informative features. Next, instead
of directly estimating the entropy, we propose a Fourier-based
characterization. For that, we develop a novel Fourier expansion
on the Boolean cube incorporating correlated random variables.
This generalization of the standard Fourier analysis is beyond
product probability spaces. Based on our Fourier framework, we
propose a measure of redundancy for features in the unsupervised
settings. We then, consider a variant of this measure with a
search algorithm to reduce its computational complexity as low as
O(nd) with n being the number of samples and d the number of
features. Besides the theoretical justifications, we test our method
on various real-world and synthetic datasets. Our numerical
results demonstrate that the proposed method outperforms state-
of-the-art feature selection techniques.

I. INTRODUCTION

A central challenge in learning with feature selection is
to jointly identify nonlinear redundancies within the features
and the dependencies in the feature-label relation. Many
well-known feature selection approaches (supervised or un-
supervised) are based on measures that capture only linear
relations or focus on the features individually [1]-[3]. Kernel-
based methods are exception; however, are prohibitive in large
datasets as the computational complexity of computing a
kernel grows super linearly with the number of the samples
[4]. Alternatively, information-theoretic metrics are powerful
candidates in quantifying nonlinear dependencies among the
random variables. However, typically estimating such quanti-
ties has high sample complexity.

In this work, we take an alternative approach and adapt
a discrete Fourier analysis with information theoretic mea-
sures. Hence, capturing nonlinear relations with low sample
complexity, while avoiding kernel computations. The discrete
Fourier expansion (on the Boolean cube) provides an essential
tool to characterize different levels of “nonlinearities” in a
function. In this expansion, any real-valued function on
the Boolean cube can be written as a linear combination
of monomials (parities) [5], [6]. Highly nonlinear functions
have Fourier expansion with large coefficients for high-degree
parities. Thus, the Fourier expansion is potentially a powerful
tool in learning problems. However, there are limitations
making it impractical. First, it is developed for product proba-
bility spaces (mutually independent input variables). Secondly,
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this expansion is defined only for deterministic functions.
These assumptions are too strong, as learning problems, often,
involve correlated features with stochastic labeling.

In this work, we make a connection between the two
approaches and aim to address these challenges. That said,
the contributions of this paper are summarized below. A full
version of the paper can be found in [7].

1) Fourier expansion for correlated random variables:
The standard Fourier expansion on the Boolean cube has been
central in a wide range of applications such as computational
learning theory [8]-[12], noise sensitivity [5], [13], and other
information-theoretic problems [14].

We develop a generalized Fourier expansion for functions
of correlated binary random variables (Proposition 1). For
this purpose, we adopt a Gram-Schmidt-type orthogonalization
and construct a set of orthogonal basis functions. Further,
we adapt our Fourier expansion to the more general space
of stochastic mappings (e.g., mappings from one probability
space to another). To the best of our knowledge, this is the
first generalization of the Fourier expansion for correlated
binary random variables. Although this Fourier expansion is
defined on the Boolean cube, our algorithms are applicable
to non-binary features too. We view the Binary Fourier as a
framework that captures a special class of nonlinearities —
those characterized via the parities. Alternatively, we could
generalize our Fourier expansion to discrete features and,
based on it, design feature selection algorithms. However, such
a generalization requires character theory, which is beyond
the scope of this paper. We note that there are other forms
of orthogonal decomposition including the Hoeffding-Sobel
decomposition [15]-[17]. However, such decompositions are
basis-free. Our Fourier expansion is defined by constructing a
set of orthonormal basis functions which makes it suitable for
feature selection.

2) Sufficiently Informative: In the unsupervised setting,
we take an information-theoretic perspective, and group the
features into redundant and sufficiently informative. All the
accessible information about the data can be captured from the
later group. More precisely, we define a subset of features as
sufficiently-informative when the joint entropy of all the input
features equals to that of the chosen subset. The former group
is statistically a function of the later, hence can be removed
without affecting the learning’s performance. This approach
extends the notion of Markov blanket for “redundant” features
to the unsupervised setting [18]-[20]. We then develop a
characterization of sufficiently informative features based on



our Fourier expansion (Theorem 1). Built upon this, we design
an Unsupervised Fourier Feature Selection (UFFS) algorithm,
which captures the redundant features in our new formulation.
Instead of ranking the features, the UFFS finds redundant
features and declares the rest of the features as sufficiently
informative. Through comprehensive numerical experiments in
Section V, we show that the UFFS outperforms well-known
methods for unsupervised feature selection.

A. Related Works

The literature in this area is extensive. Here we can only give
pointers to some of the best known approaches. Some common
approaches in unsupervised feature selection are pseudo-label
based, “column subset selection”, and spectral/manifold based.
Methods in the first approach such as [21], [22] attempt to gen-
erate pseudo-labels via certain clustering methods. However,
such methods focus on linear transformations between features
and the pseudo labels and ignore the nonlinear relations.

The second approach, “column subset selection”, assumes
only linear dependencies among the features and solves an
optimization problem that is similar to principal component
analysis (PCA) [23], [24]. Although methods in the third
approach, such as [25], [26], capture nonlinear relations, they
ignore the interaction between the features.

We emphasize here that although dimension reduction meth-
ods such as Kernel PCA captures non-linear redundancies,
they are not feature selection as the output is a mixture of
the features.

In the supervised settings, several measures and approaches
has been introduced. Among them are similarity-based mea-
sures (e.g., Pearson correlation, Fisher Score), information-
theoretic measures [18], [27]—[30], and Kernel-based measures
[31]-[33]. A nice survey is available in [1] and [2].
Notations: We write [m] for set {1,2,---, m}. For any subset
J C [d] with ordered elements {j1,jo," -, jx}, the vectors
(X5, X+, X5, ), and (x,,2j,,---,x;,) are denoted, re-
spectively, by X and x7.

II. FOURIER FOR CORRELATED RANDOM VARIABLES

In this section, we propose a novel Fourier expansion for
functions of correlated binary features.

We start with a brief overview of the well-known Fourier
expansion on Boolean cube [5]. Let X = (X3, X5, ..., Xg4)
be a vector of mutually independent random variables taking
values from a {—1,1}. Let p; and o; be the mean and
standard-deviation of X, j € [d]. Suppose that these random
variables are non-trivial, that is o; > 0 for all j € [d]. The
Fourier expansion is defined via a set of basis functions called
parities. The parity for a subset S C [d] is defined as

¢s(x) 2 ] %,

i€S

for all x € R%.

Since X;’s are mutually independent, the parities are or-
thonormal, that is E[¢s(X)?] = 1 for any subset S, and
Elps(X) ¢7(X)] =0 when T # S (that is 3z € 7 (JS such
that x ¢ 7(S). Under the assumption that X = {—1,1}¢, the

parities form an orthonormal basis for the space of bounded
function f : {—1,1}¢ +— R [5]. That is, any bounded function
f:{-1,1}% — R can be written as a linear combination of

the form
f(X) = Z fs ¢$(X)7

Scld]

for all x € {—1,1}%, where f5 € R are called the Fourier
coefficients of f with respect to Px, the distribution of X.
Further, the Fourier coefficients can be computed as fs =
E[f(X)ps(X)], for all subsets S C [d].

With this overview, we are ready to construct our Fourier
expansion. Note that, in a general probability space with
correlated features, the standard Fourier expansion is no longer
well-defined. Because, the parities ¢s are not necessarily
orthogonal. That said, we construct our Fourier expansion by
adopting a Gram-Schmidt-type procedure to make the parities
orthogonal. Then, we use this basis to develop our Fourier
expansion for function of correlated random variables. The
orthogonalization process is explained in the following.

A. Orthogonalization process:

Fix the following ordering for subsets of [d]:

0,{1},{2},{1,2},{3},{1,3},{2,3},---,{1,2,...,d}. (1)

For any pair of functions g¢;,9> denote (gi,g2) =
E[g1(X)g2(X)]. We apply the Gram-Schmidt process on the
parities ¢s, with the above ordering and (g1,¢g2) as the
inner product. With this method, the orthogonalized parity
corresponding to the ¢th subset is obtained from the following
equations

i—1

Vs, = s, — ZWSJ- , 05:)Vs; 2
j=1
Ps, e LT
s, =4 Tosga I ldsill2>0 3)
0 otherwise.

2 = 1\/(s,,1bs,). Note that the first orthog-
onalized parity is given by 9p(x) = 1 for all x € R%
By construction, the resulted nontrivial parities 1s,’s are
orthonormal, that is (¢s,,9s;) = 0 for i # j and (¥s,,
Ys,) = 1 if ¢g, is not trivial.

Depending on the statistics of the features, the number of
non-trivial parities ranges from 1 to 2¢. On one extreme, if
the features are mutually independent, then ¥s, = ¢s,. On
the other extreme, if the features are trivial, then ¢s, = 0 for
7 > 1, and hence there is only one non-trivial parity. Note
also that different orderings for the subsets of [d] result in
different orthogonalized parities. We can show that ordering
(1) is beneficial to remove “redundant” features. Hence, unless
otherwise stated, we use the ordering in (1).

In the next proposition we establish our Fourier expansion
for functions of correlated binary random variables.

where |1)s,

Proposition 1 (Correlated Fourier Expansion). Let Px be
any probability distribution on {—1,1}* and f : {—1,1}¢ —



R be a bounded function. Let s’s be the orthogonalized
parities as defined in (2). Then, for all x € {—1,1}% except a
measure-zero subset, f(x) is decomposed as

= Y fsus(x

SCld]

where the summation is taken over all S C [d] for which
s is not trivial. Further, the coefficients fs are unique and

obtained from fs = E[f(X)1s(X)].

As discussed before, depending on Px, some of the parities
1s are trivial. Hence, the corresponding coefficients fs are
made to be zero.

We view our binary Fourier as a framework that captures
a special class of nonlinearities — those characterized via
orthogonalized parities. Our numerical experiments presented
in Section V verifies that such a special class is sufficient for
many data sets (see Table I).

III. INFORMATION SUFFICIENCY

We build upon our orthogonalization process in (2) and
develop our UFFS algorithm (see Algorithm 1) to capture
non-linear redundancies in the features. For this purpose, we
first define a measure to identify the features as “sufficiently
informative” and “redundant”. Intuitively, the former group
contains all the information accessible from the features.
The later consists of the features that are a function of the
“informative” features, and hence, can be removed from the
data set.

Suppose that there are d features denoted by the random
vector X = (X3, Xo, ..., X,) taking values from a discrete
subset X C R?. We say J C [d] is a “sufficiently informative”
feature subset, if H(X) = H(X 7, where H is the Shannon
entropy. This definition is related to the notion of Markov
Blanket [28], as J is a Markov blanket for any feature in J°.
Also, J being sufficiently informative immediately leads to
J ¢ being redundant. Because, the condition H(X) = H(X )
implies that there exists a mapping T, such that X7V° =
T(X J ), with probability one [34]. Hence, all the features
not included in 7 can be removed. With this elimination, the
dimension is reduced from d to | J|. As there are multiple such
J’s, the objective is to find the smallest one!. Tolerating small
amounts of imperfections, we formalize the above notion in
the following.

Definition 1 (Sufficiently Informative). For discrete features
and 0 < € < 1, a feature subset [J is said to be e-
sufficiently informative, if H(X|X7) < e. The feature subset
J is sufficiently informative, if H(X|X7) = 0. Such J is
called minimal, if it has the minimum cardinality among all
sufficiently informative feature subsets.

Next, we make a connection between the above definition
and the orthogonalization process in (2). We employ this
process to extract a sufficiently informative feature subset. Fix

IThe set of all features is a trivial example of a sufficiently informative
feature subset.

the standard ordering as in (1), and generate the orthogonalized
parities s, .

Theorem 1. Let J. C [d] be the set of all i’s such that
¥4iyll2 > €. Then, for sufficiently small € > 0, H(X|X 7<) =
0. Further, if the features take values from {—1,1}<, then there
exists a permutation of the features so that J. with € = 0 is
a sufficiently informative subset that is minimal.

Proof. We start by deriving an upper-bound on H(X|X7)
in terms of the orthogonalized parities in (2). Note that
H(X|X7) = H(XJ<|X7), where J¢ is the complement
of J.. Thus, from the chain rule [34], this quantity equals
0 Y,cqe H(X;| X7, X71). As X; is a discrete random
variable and biy(x) = (xi — pq) /oy, then

H (o (X)X T, X7,

Since ¢,y is the standard parity as in Section II, then, from
the orthogonalization process in (2), we can write

by = Vpiy + Z ass, 4

SCli—1]

H(Xi|Xj€7Xi_l) =

where a.s = (¢(;},Ys). In this decomposition, the terms in the
summation depend only on X*~!. This is due to the particular
ordering in (1). Therefore, we get the following upper-bound

H(n | X7, X771 = Hp | X7, X7 < HWyy),

where the last inequality follows by removing the conditioning
in the entropy. Lastly, adapting this bound for all ¢ € J£, we
get the following upper-bound

H(XYXT) < > H(dgy). 5)

i€JE

Now set € = min{||1/~J{7;}||2 21 € [d], ||L/~1{7;}||2 > 0}. Then, for
any i ¢ J., we have that ||1ﬁ{i}|\2 = 0. Therefore, H(lﬁ{i}) =
0 for all i € J¢ and, from (5), we get that H(X%|X 7<) = 0.
This completes the proof for the first statement of the theorem.

Next, we prove the second statement: “if the features take
values from {—1,1}¢, then there exist a permutation of the
features so that J. with € = 0 is a sufficiently informative
subset with minimum cardinality.” Note that, from Definition
1, the subset Jp is sufficiently informative. This is because
for any j ¢ Jo the parity ;1 (X) = 0 with probability one.
Therefore, from (2), the standard parity ¢y;) is a function of
(X1,X2,...,X;_1). Implying that X, is a function of (X,
Xo, ..., Xj_1). Hence, H(X?X70) = 0. It remains to prove
Jo is minimal when the features take values from {—1,1}¢
and are permuted appropriately.

Let A C [d] be a sufficiently informative subset with min-
imum cardinality as in Definition 1. Consider a permutation
of the features such that the first |A4| features are from .A.
We perform the orthogonalization process on the permuted
features. Let 7 be the subset for which ||1/~}{i} l2 > 0. Since,
A is sufficiently informative with minimal cardinality, then
A C Jo. We show that in fact Jy C A, implying that
Jo = A and, hence, 7, is minimal. By contradiction, suppose



that Jo\.A is not empty. Then, there exists j ¢ A such that
l¥g1ll2 > 0. As a result, 1y is orthogonal to all s with
S C A and, hence, cannot be written as a linear combination
of s with § C A. This is a contradiction because subset A
being sufficiently informative implies that any function f(x?)
can be written as g(x*) for some function g. Thus, the Fourier
expansion of f(x?) must involve only s, for S C A. But
as explained above, ¢y is a function that contradicts this
property. Therefore, Jo\\A = 0, and hence, Jy = A and is
minimal. O

IV. UNSUPERVISED LEARNING ALGORITHM

As a result of Theorem I, ||7,Z~J{,;}H2 can be viewed as a
measure of the redundancy of each feature and that the orthog-
onalization procedure can remove them. We use this measure
for unsupervised feature selection, where n independent and
identically distributed (i.i.d.) instances {x(i),i € [n]}, with
possible correlations across feature dimension, are available.

The idea is to perform the orthogonalization process as
in (2) and find the features j for which H/(;{j}HQ is smaller
than a threshold e. These features are declared as redundant.
As for the algorithm, two issues need to be addressed: 1)
the orthogonalization takes exponential time, as there are 2%
feature subsets, and 2) estimation of ||1ZJ{]-} ||2 from the training
instances. In what follows, we address these issues. Our UFFS
algorithm is presented in Algorithm 1.

a) Fixed-depth search: We propose to address the first
issue using a fixed-depth search method. Given a parameter ¢ <
d, the orthogonalization is performed only on feature subsets
of size at most ¢. For that we use the standard ordering as in
(1), but restricted to subsets of size at most ¢.

b) Empirical orthogonalization: We propose a recur-
sive formula to perform the orthogonalization and estimate
lgj1ll2- Let by = (¢s,, ¢s,), and define a;; = (Vs,, ds,)-
Therefore, (2) can be written as that

S; — 9S; — 7,iYS; -
(0 ¢ ajis;
i<i

Due to the orthonormality of s, ’s, we obtain that ||¢s, [|2 =
bii— i< aii. Further, the coefficients a; ; can be calculated

recursively as

! 5 (bj,i - Z ae,jaz,i) (6)

qu‘ y 5 1<j

With this formulas, we first compute an empirical estimate
of b;;’s, denoted by IA)” Then, we compute an estimation of
a;j;’s (denoted by a;;) by calculating (6) with b;; and a;;
replaced by l;“ and a; ;, receptively. Lastly, we obtain an em-
pirical estimate of ||¢)s, ||2 by computing lA)m' — D i< &fZ

c) Clustering the features: The above two processes
are implemented in Algorithm 1. For large dimensional data
sets, we can group the features into multiple clusters of
approximately equal size (say m features). Then, we perform
Algorithm | on each cluster, and remove the redundant fea-
tures within it.

Gji =
bj; —

With this approach, the computational complexity of UFFS
algorithm with depth parameter ¢ and cluster size m is
O(n%mm). The parameters m and ¢ are chosen independently
of (n,d). For instance, we choose ¢t = 3 and m = 40. As a
result, we obtain a complexity linear in the size of the data

set.

Algorithm 1 Unsupervised Fourier Feature Selection (UFFS)

Input:n training samples x; € R?, depth parameter ¢ < d,
and redundancy threshold € € (0, 1)

Output: Features’ measures norm(j),j = 1,2, ...d

1: Compute the empirical mean fi; and standard deviation
0, of each feature.

2: Generate all subsets S; C [d] with size at most ¢ and with
the standard ordering as in (1). Compute the matrix B
with elements:

bji %i[ 11 xlu&;ﬂu} [ 11 xlvef_ M}

v

=1 wu€S; veS;
3. Set A — B )
4: for row j of A do R . R
5: update the jth row: A, . < A; . — ij Qe ;A gy
6: Compute norm(S;) < \/[l;“ DD e
7: if norm(S;) < e then
8: Set the jth row of A zero: A, <0
9: else R .
10 Normalize the jth row: A, + ﬁ(‘g)

J

11: Declare all ¢ € [d] with norm({¢}) > € as non-redundant.

We present our experimental results next. We provide a con-
sistency analysis on asymptotic performance of the algorithm.

Theorem 2. Let J, be the set of features declared by
Algorithm 1 with parameter t < k when executed on n discrete
i.i.d. samples. Then, there exists a function \ such that jn isa
(e, n)-sufficiently informative. Further, lim,, o lim 0 (e,
n)=0

Proof sketch. Let D,, denote the empirical distribution of the
training samples. That is D, (x) = L if x is in the training set;
otherwise D,,(x) = 0. Note that, even with the partial fixed-
depth orthogonalization, we can still apply the first part of
Theorem 1. The reason is that (4) holds with the summation
ranging over all § C [i — 1] with |S| < t. That said, we
use Theorem 1 with ﬁn as the distribution of the random
variables in the statement. As a result, H, (X|X7") = 0,
where H,, is the conditional entropy calculated over D, as
the distribution. The rest of the argument is a concentration
analysis. In particular, from McDiarmid’s inequality and the
continuity of entropy, we can show that H, converges to the
true conditional entropy. O

V. NUMERICAL EXPERIMENTS

We now compare the performance our UFFS algorithm with
a number of well-known methods for unsupervised feature



TABLE I
COMPARISON OF UNSUPERVISED ALGORITHMS.

| S1 S2 S3  USPS Covertype Australian Musk ALL AML Lung

NoFS | 779 750 87.0 973 75.6 84.9 922 94.3 94.6
UFFS k | 11 12 11 93 34 12 35 39 114
UFFS | 80.3 768 862 97.0 76.9 85.1 85.7 97.1 94.6
LS 55.1 612 71.0 956 72.8 854 84.5 97.2 93.6
MCES | 56.6 59.0 658 939 72.3 84.8 84.2 95.9 94.1
UDFS | 64.0 60.6 643 80.8 72.0 84.9 80 86.2 92.6

selection. We tested the algorithms on several real-world data
sets as given in Table II. These data sets are benchmarks and
taken from [2] and the UCI repository [35].

In addition, we generated three data sets, denoted by SI,
S2, and S3. Each data set has 1000 samples and 30 fea-
tures: 10 informative denoted by (X1, Xo, ..., X10), 10 nonlin-
ear redundant (X1, X192, ..., X29), and 10 linearly redundant
(X21, X129, ..., X30). The informative features are generated
according to three distributions, one for each data set. The
distribution for S1 is N(0,1q), for S2 is uniform distribution
over [—1,1]'°, and for S3 is uniform distribution over {—1,
1}10,

Each nonlinear redundant feature is generated from X; =
3X;, X, X, where j = 11,12,...,20, and 41, ¢2, 3 are ran-
domly and uniformly selected from {1, 2, ...,10}. The linearly
redundant features are generated from X; = Z?Zl a1 Xy,
where 4;’s are selected randomly from {1,2,...,10} and a;; ~
Unif(0, 1). We use the above redundancy model for each data
set. For the sake of performance comparison, we add a labeling
to the above data sets. However, the labels are not revealed to
the algorithms. We generate a fixed but randomly generated
labeling function f(X) on R!°. This function is the sign of
the following randomly generated polynomial in R'?:

f(X)ZSign[ T ®os+ > bi,jxi)}a
1<j<3 1<i<10

where b; ; ~ Unif(0, 1) and mutually independent.

TABLE I
PROPERTIES OF THE REAL-WORLD DATA SETS.

Data set | USPS  Lung Covertype Australian Musk ALL AML
Features 256 3312 54 4 166 7128
Samples | 9298 203 581 690 467 72

We compare the performance of UFFS with Laplacian
Score (LS) [25], MCFS [26], and UDFS [22] on the real
and the synthetic data sets. The labels are not revealed to
the algorithms, but used for measuring the performances.
Features are randomly ordered, so that the initial ordering
would not affect the experiments’ outcomes. Contrary to other
algorithms, UFFS does not rank the feature; instead it outputs
a set of indices as the non-redundant features.

We run UFFS three times: first with ¢ = 1, m = d, second,
with £ = 2, m = 50 but on the selected features from the first
run, and third, with ¢ = 3, m = 30 but on the selected features
from the second run. For each experiment, let k& denote the

number of the selected features by UFFS at the third run.
For comparing the performance to the ranking algorithms,
we select only the k features with the highest rank. Once
the features are selected by each unsupervised algorithm, we
reveal the samples of the selects features with the labels to
a classifier and compute its prediction accuracy. A support
vector machine (SVM) classifier with radial basis function as
kernel is employed for all the studies. We perform a 5-fold
cross validation using this classifier and on the entire data set.

Table I shows the average of the resulted classification
accuracies for each algorithm. The second row is the resulted
accuracy without any feature selection. The third row is k
which is the number of non-redundant features declared by
the UFFS. Observe that, in synthetic data sets, k is very close
to 10 which is the actual number of non-redundant features.
The resulted accuracy by the UFFS is very close or greater
than the accuracy without feature selection which verifies that
the removed features were redundant. Further, it significantly
outperforms other algorithms in the synthetic and many real
data sets. This result shows that the UFFS performs well on
data sets with nonlinear redundancies.

A. Running Time Comparison

We numerically compared the running time of the algo-
rithms. The results (in seconds) are reported in Table III. For
the existing algorithms, the implementations are taken from [2]
and correspond to the original implementations”. As it shows,
the running time of our algorithm (UFFS) is comparable to
other algorithms even for high-dimensional datasets such as
ALL AML with d = 7000.

TABLE III
COMPARISON OF RUNNING TIMES (IN SECONDS).

| sI1 S2 S3 USPS Cov. Aust. Musk ALLAML Lung
UFFS 2.6 285 1.1 248 2 3 2.1 280 96
UDFS | 11.1 22.79 16.9 17875 3 4.1 2.37 28305 780
MCFS | 2.45 2.37 2.55 389 1.2 143 1.7 75.4 98.2
LS 1.22 1.19 1.2 266 0.62 0.75 0.49 8.38 4.4
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