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Abstract
A fundamental obstacle in learning information
from data is the presence of nonlinear redun-
dancies and dependencies in it. To address this,
we propose a Fourier-based approach to extract
relevant information in the supervised setting.
We first develop a novel Fourier expansion for
functions of correlated binary random variables.
This expansion is a generalization of the stan-
dard Fourier analysis on the Boolean cube beyond
product probability spaces. We further extend our
Fourier analysis to stochastic mappings. As an
important application of this analysis, we inves-
tigate learning with feature subset selection. We
reformulate this problem in the Fourier domain
and introduce a computationally efficient measure
for selecting features. Bridging the Bayesian error
rate with the Fourier coefficients, we demonstrate
that the Fourier expansion provides a powerful
tool to characterize nonlinear dependencies in the
features-label relation. Via theoretical analysis,
we show that our proposed measure finds provably
asymptotically optimal feature subsets. Lastly, we
present an algorithm based on our measure and
verify our findings via numerical experiments on
various datasets.

1. Introduction
A central challenge in learning with feature selection is to
jointly identify nonlinear redundancies within the features
and the dependencies in the feature-label relation. Many
well-known feature selection approaches (supervised or un-
supervised) are based on measures that capture only linear
relations or focus on the features individually (Guyon &
Elisseeff, 2003; Li et al., 2018; Solorio-Fernández et al.,
2020). Kernel-based methods are on the other hand able to
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capture non-linear relations (Gretton et al., 2005; Chen et al.,
2017; Wei et al., 2016). However, they are prohibitive in
large datasets as the computational complexity of computing
a kernel grows super linearly with the number of the sam-
ples (Cesa-Bianchi et al., 2015). Alternatively, information-
theoretic metrics are powerful candidates in quantifying non-
linear dependencies among the random variables (Vergara
& Estévez, 2014; Koller & Sahami, 1996; Yu & Liu, 2004;
Battiti, 1994; Peng et al., 2005). However, estimating such
quantities usually requires high sample complexity. Other
approaches are wrapper and embedded methods where the
feature subsets are evaluated directly by an induction algo-
rithm (Yamada et al., 2020b). Such approaches are usually
computationally expensive and, hence, prohibitive in large
datasets.

In this work, we take an alternative approach and adapt
discrete Fourier analysis to capture nonlinear relations with
low sample complexity while avoiding kernel computations.
The discrete Fourier expansion (on the Boolean cube) pro-
vides an essential tool to characterize different levels of
“nonlinearities” in a function. In this expansion, any real-
valued function on the Boolean cube can be written as a
linear combination of parities (O’Donnell, 2014; Wolf,
2008). Highly “nonlinear” functions tend to have Fourier
expansion with large coefficients for high-degree parities —
potentially making the Fourier expansion a powerful tool
in learning problems. However, this expansion has a few
limitations that need to be addressed. First, it is developed
for product probability spaces (mutually independent input
variables). Secondly, this expansion is defined only for de-
terministic functions. These assumptions are too strong,
as learning problems often involve correlated features with
stochastic labeling. In this work, we intend to address these
challenges by proposing a Fourier-based feature selection
algorithm.

1.1. Main Contributions

We demonstrate, via theoretical analysis and numerical ex-
periments, that the Fourier expansion provides a powerful
tool to characterize nonlinear redundancies and dependen-
cies in the data. To the best of our knowledge, this is the first
instance of using the Fourier expansion as a measure in su-
pervised feature selection. In what follows, we summarize
the main contributions of this paper.



Fourier expansion for correlated random variables:
We develop a generalized Fourier expansion for functions of
correlated binary random variables (Proposition 1). For this
purpose, we design a Gram-Schmidt-type orthogonalization
and construct a set of orthogonal basis functions. Further,
we adapt our Fourier expansion to the more general space
of stochastic mappings (e.g., mappings from one probabil-
ity space to another). Although this Fourier expansion is
defined on the Boolean cube, our analysis applies to non-
binary features as well. We view the binary Fourier as a
framework that captures a particular class of nonlinearities
— those characterized via the parities. Our numerical results
in Section 6 verifies that this Fourier expansion is sufficient
to capture the nonlinearities. Alternatively, we could gener-
alize our Fourier expansion to discrete features and, based
on it, design feature selection algorithms. However, such a
generalization requires character theory, which is beyond
the scope of this paper.

Measure for feature subset selection: When the feature-
label probability distribution is known, features are ideally
selected based on the Bayes misclassification rate as the
measure. In practice, without knowledge of this distribution,
given the training set, one approach (wrapper method) is to
select feature subsets that minimize the empirical error rate
of a given classifier (Guyon & Elisseeff, 2003).

Unlike conventional wrapper methods whose performance
criteria depend on the given classifier, our measure for fea-
ture subset selection is independent of the classifier. For that,
we first formulate the feature selection in an ideal setting
as follows: given a parameter k, the objective is to find k
features such that the misclassification rate of the Bayes clas-
sifier, restricted to k features, is minimized. We then refor-
mulate this problem in the Fourier domain and characterize
the optimal feature subset. Building upon such a formula-
tion, we develop a measure to evaluate feature subsets. We
prove that an exhaustive search based on this measure finds
an asymptotically optimal feature subset when the features
are binary. That is a feature subset whose Bayes misclassifi-
cation rate is at most O(n−γ), γ ∈ (0, 1/2), larger than that
of the optimal feature subset (Theorem 2).

Search algorithm for Fourier-based measure: Since
the exhaustive search in the Fourier characterization is com-
putationally expensive, we develop a search algorithm with
fixed depth – given a depth parameter t, the idea is to eval-
uate only the feature subsets of size at most t. For numer-
ical results, we usually set t ≤ 3. With this approach, we
propose the Supervised Fourier Feature Selection (SFFS)
algorithm with computational complexity O(n(d + d̃t)),
where n is the number of the samples, d is the number of
the features and d̃ is the number of non-redundant features.
Based on our numerical experiments, d̃ is typically much

smaller than d. Our numerical results in Section 6 show that
typically d̃ is much smaller than d (See Table 2). Hence the
overall computational complexity of SFFS is dominated by
O(nd) which is linear in the size of the data.

Through our numerical experiments, we show that SFFS,
even with t = 1 or t = 2, performs consistently better on
a variety of datasets as compared to several well-known
feature selection algorithms such as mRMR (Peng et al.,
2005), Mutual Information (Kraskov et al., 2011), RFS (Nie
et al., 2010), CCM (Chen et al., 2017), and ReliefF (Kira &
Rendell, 1992) (See Section 6). We thus overcome two well-
known demerits of wrapper methods for feature selection
that limit their usage in practice – heavy dependency on the
predictive performance of the learning algorithm and huge
search space.

Notations: As a shorthand, in this paper, for any natural
number m, the set {1, 2, · · · ,m} is denoted by [m]. Also,
for any subset J ⊆ [d] with ordered elements {j1, j2, · · · ,
jk}, the vectors (Xj1 , Xj2 , · · · , Xjk) and (xj1 , xj2 , · · · ,
xjk) are denoted, respectively, by XJ and xJ . For any pair
of functions g1, g2 denote 〈g1, g2〉D = ED[g1(X)g2(X)],
where D is the distribution of the input variables.

2. Optimal Feature Selection: A Fourier
Perspective

We consider the learning problem with d real-valued fea-
tures and with labels taking values from {−1, 1}. We restrict
ourselves to binary classification with 0 − 1 loss function
for convenience in presenting the theoretical results. In this
case, the expected loss is the misclassification probability.

The features X ∈ Rd and the label Y ∈ {−1, 1} are gener-
ated according to an unknown distribution D. Available are
n independent and identically distributed (i.i.d.) instances

Sn =
{
(x(i), y(i)), i = 1, 2, ..., n

}
,

generated from a fixed, but unknown, distribution D.

We describe the feature selection problem by first defining
the optimum feature subset and the minimum misclassifica-
tion probability in the ideal setting, whereD is known. For a
feature subset J ⊆ [d], the minimum attainable mislabeling
probability is obtained from

LD(J ) = min
g∈Gk

P(X,Y )∼D
{
Y 6= g(XJ )

}
, (1)

where Gk is the collection of all functions on Rk. Then,
given k ≤ d, the optimum feature subset J ∗ and the mini-
mum loss are defined as

J ∗ = argmin
J⊆[d], |J |=k

LD(J ), L∗D(k) = LD(J ∗). (2)

In agnostic settings, where only a training dataset is avail-
able, the above optimization is not feasible to solve. Instead,
an intermediate measure Mn is defined to evaluate feature
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subsets using the training instances. Then, feature selec-
tion using the measure Mn is modeled by the following
optimization

Ĵn = argmin
T ∈Tk

Mn(T ),

where Tk is a collection of feature subsets with at most
k-elements.

Our objective is to propose a measure Mn so that misla-
beling probability based on Ĵn be as close as possible to
LD(J ∗) with the optimal feature subset J ∗. For that, we
first represent the problem in the Fourier domain.

2.1. Fourier Expansion for Functions of Correlated
Boolean Random Variables

The main ingredient for our learning approach is a Fourier
expansion that incorporates correlated binary random vari-
ables. We first present an overview of the standard Fourier
expansion on the Boolean cube (O’Donnell, 2014; Wolf,
2008). It states that any bounded function g : {−1,
1}d → R can be written as a linear combination of monomi-
als, as in the following

g(x) =
∑
S⊆[d]

gS xS , ∀x ∈ {−1, 1}d,

where xS =
∏
j∈S xj , and gS ∈ R are called the Fourier

coefficients. Further, such coefficients are calculated as

gS =
1

2d

∑
x∈{−1,1}d

g(x) xS .

This expansion is suitable when the probability distribution
of the features is uniform over {−1, 1}d. Hence, it finds its
applications in many computational learning problems such
as (Linial et al., 1993; Mossel et al., 2003; Heidari et al.,
2019). However, we need a more sophisticated Fourier
expansion incorporating non-uniform distributions for other
learning problems such as feature selection. For that, we
construct a set of orthogonal parity functions. Based on
that, we establish our Fourier expansion for functions of
correlated binary random variables.

Proposition 1 (Correlated Fourier Expansion). Let DX

be any probability distribution on {−1, 1}d. Then there are
a set of orthonormal parity functions ψS ,S ⊆ [d] such that
any bounded function g : {−1, 1}d → R is decomposed as

g(x) =
∑
S⊆[d]

gSψS(x),

for all for all x ∈ {−1, 1}d except a measure-zero subset.
Further, the coefficients gS are unique and obtained from
gS = EDX

[g(X)ψS(X)].

Proof idea: We start by centralizing and normalizing the
input random variables. Let µj and σj be the mean and
standard-deviation of each input random variable Xj , j ∈

[d]. Suppose that these random variables are non-trivial, that
is σj > 0 for all j ∈ [d]. For any subset S ⊆ [d] defined

χS(x) =
∆
∏
j∈S

xj − µj
σj

, for all x ∈ {−1, 1}d.

Note that χS’s are not orthogonal because Xj’s are corre-
lated. That said, we construct our Fourier expansion by
designing a Gram-Schmidt-type procedure to make these
parities orthogonal. Then, we use this basis to develop our
Fourier expansion for functions of correlated random vari-
ables. The orthogonalization process is explained in the
following.

Orthogonalization process: Fix the following ordering
for all subsets of [d]:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, · · · , [d].
(3)

We apply the orthogonalization process on χSi with the
above ordering. The first orthogonalized parity is given by
ψ∅(x) = 1 for all x ∈ {−1, 1}d. Then, the orthogonalized
parity corresponding to the ith subset is obtained from the
following operation:

ψ̃Si ≡ χSi −
i−1∑
j=1

〈ψSj , χSi〉D ψSj ,

ψSi ≡

{
ψ̃Si

‖ψ̃Si‖2,D
if ‖ψ̃Si‖2,D > 0

0 otherwise.
(4)

where ‖ψ̃Si‖2,D =
√
〈ψ̃Si , ψ̃Si〉D. By construction, the

resulted nontrivial parities ψSi’s are orthonormal, that is
〈ψSi , ψSj 〉D = 0 for i 6= j and 〈ψSi , ψSi〉D = 1 if ψSi is
not trivial.

The rest of the argument, given in the Supplementary Ma-
terial, follows by showing that ψS’s span the space of all
bounded functions.

Different orderings of subsets of [d] result in different or-
thogonalized parities. The standard ordering in (3) is ben-
eficial to our problem. Depending on the statistics of the
features, the number of non-trivial parities ranges from 1 to
2d. On one extreme, if the features are mutually indepen-
dent, then ψSi = χSi . On the other extreme, if the features
are trivial, then ψSi = 0 for i > 1, and hence there is only
one non-trivial parity.

Among the trivial parities, there might be sets of single-
element ones ψ{j}. The features j ∈ [d] for which ψ{j}
is trivial do not appear in the Fourier expansion. Hence,
they can be removed as they are statistically redundant.
Based on this argument, for the feature selection problem
in (2), the optimal feature subset J ∗ does not contain any
of the redundant features. Hence, we search over feature
subsets corresponding to non-trivial parities only. This is
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done automatically with the orthogonalization process. We
use this argument when proposing Procedure 1 (FOURIER-
ORTH).

Contrary to our Fourier expansion, which is established only
for binary features, the orthogonalization process is not re-
stricted to such an assumption. Because, by construction,
the orthogonalized parities are orthonormal for any value
domain X ⊂ Rd. If X = {−1, 1}d, then the parities span
the space of all function on X ; otherwise, they span a sub-
space of such functions. We clarify this in the following
example.

Example 1. Set d = 3 and let X1 and X2 be independent
random variables with Gaussian distribution N(0, 1). Sup-
pose X3 = X1X2 with probability one. There are eight
standard parities, one for each subsets, as

1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3.

By performing the orthogonalization process, as in (4), there
are only four non-trivial orthogonalized parities as

ψ∅ = 1, ψ{1} = x1, ψ{2} = x2, ψ{1,2} = x1x2.

The rest of the parities are zero, because ‖ψ̃S‖2 = 0 for any
of the subsets {3}, {1, 3}, {2, 3}, {1, 2, 3}.

Now, suppose we change the relation of X3 to X3 =
sign[X1X2]. In this case, after the orthogonalization pro-
cess, there are eight non-trivial parities. For instance, it
is not difficult to check that ψ̃{3} = x3 − 2

πx1x2. Hence,
‖ψ̃{3}‖2 > 0, implying that ψ{3} is not redundant.

We view our binary Fourier as a framework that captures a
particular class of nonlinearities characterized via orthog-
onalized parities. Our numerical experiments confirm that
such an approximation is sufficient in many real-world
datasets.

Remark 1. We note that the orthogonalization process de-
tailed in this section is different from conventional polyno-
mial kernel methods for dimension reduction. Our orthogo-
nalization method incorporates the underlying distribution
of the features and outputs the basis for Fourier expansion,
thus characterizing the optimal Bayes error rate (given later
in Theorem 1). Further, this orthogonalization is suitable
for feature selection as it does not mix the features.

2.2. Fourier Model

Next, we use the Fourier expansion in the previous sec-
tion and develop a representation of L∗D(k) in the Fourier
domain. The Fourier expansion in the previous section is
defined for deterministic functions. The labeling in the fea-
ture selection problem is not necessarily a function of the
features. Rather, it is a stochastic mapping Y . That said, we
extend the Fourier expansion to such mappings.

We proceed by characterizing the Bayes predictor via the

Fourier expansion. Finally, we present the following results
with the proofs provided in the Supplementary Material.

Lemma 1. Let J be the subset of the selected features.
Then, the Bayes predictor of the label from observation xJ

is given by sign[f⊆J (xJ )], where f⊆J is a real-valued
function on {−1, 1}|J | admitting the Fourier expansion

f⊆J (xJ ) =∆
∑
S⊆J

fSψS(x
J ), (5)

where ψS ’s are the parities resulted from the orthogonaliza-
tion with respect to J and fS = ED[Y ψS(X)].

Based on this result, we characterize L∗D(k) in the Fourier
domain and find the optimal Feature subset.

Theorem 1. The minimum attainable misclassification
probability equals to

L∗D(k) =
1

2

[
1− max

J⊆[d], |J |=k
‖f⊆J ‖1,D

]
, (6)

where D is the feature-label distribution over {−1, 1}d+1.
Further, an optimal k-variable predictor of the labels is
given by the function sign[f⊆J

∗
(x)], where J ∗ is an opti-

mal feature subset that maximizes the 1-norm expression
above.

The proof of Lemma 1 and Theorem 1 are provided in
Section B and C of Supplementary Material.

3. A Measure for Feature Selection
The previous section provides the characterization in the
ideal setting where D, the statistics of the features and
labels, is known. Next, we leverage this characterization
to the agnostic setting and present a measure for feature
selection.

We only have access to n i.i.d. training samples drawn from
an unknown but fixed D. Based on Theorem 1, we define
Mn(J ) to be an empirical estimate of ‖f⊆J ‖1. Therefore,
if the estimations are accurate enough, then maximizing
Mn leads to a feature subset Ĵ for which LD(Ĵ ) is close
to the optimal loss LD(J ∗) as in (2). In what follows, we
describe the derivation of Mn in three steps:

Step 1: First, we perform an empirical orthogonalization.
Let D̂n be the empirical distribution of the training set Sn,
that is D̂n(x, y) = 1

n if (x, y) ∈ Sn, and zero otherwise.
We get the empirical version of our results by replacing D
with D̂n. In particular, Proposition 1, and the orthogonal-
ization in (4). We elaborate on this step in Section 4.1. Let
ψ̂S denote the parities resulted from the orthogonalization
with respect to D̂n. By construction, these functions are
orthonormal with respect to D̂n.
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Step 2: Next, we construct the estimate of the function
f⊆J as in (5). For that we calculate the following

f̂S = ED̂n
[Y ψ̂S(X)] =

1

n

∑
i

yiψ̂S(xi).

Once the empirical parities and the Fourier coefficients f̂S
are calculated, the estimation of the projection function f⊆J

is obtained from the equation

f̂⊆J (x) =∆
∑
S⊆J

f̂S ψ̂S(x).

Step 3: When f̂⊆J is obtained, the next step is to approx-
imate ‖f̂⊆J ‖1. By definition, ‖f̂⊆J ‖1 =∆ EX[|f̂⊆J (X)|].
Hence, naturally, the estimation of this quantity is obtained
by the empirical averaging

1

n

n∑
i=1

∣∣f̂⊆J (x(i))∣∣.
Since we use the same training samples to obtain both f̂⊆J

and its empirical 1-norm, these two quantities are correlated.
Hence, the above estimation is possibly biased. That said,
we make a correction and define our measure Mn as in the
following

Mn(J ) = ‖̂f⊆J ‖1 =∆

1

n− 1

n∑
i=1

∣∣∣∣ ∑
S⊆J

f̂S ψ̂S(x(i))−
1

n
y(i)

(
ψ̂S(x(i))

)2 ∣∣∣∣.
(7)

This correction is done by subtracting the quantity
1

n
y(i)

(
ψ̂S(x(i))

)2
.

We use Mn(J ) as an estimate of ‖f⊆J ‖1. It can be shown
that this estimator is asymptotically unbiased (See Lemma
D.1 in Supplementary Material), that is

lim
n→∞

∣∣∣ ESn∼Dn [Mn(J )]− ‖f⊆J ‖1
∣∣∣ = 0.

We conclude this section by presenting our analysis for
the proposed measure. We note here that in our problem
the function f⊆J is not necessarily bounded. Hence, the
standard concentration inequalities such as Rademacher
complexity do not apply. We address this issue and prove
the following theorem.

Theorem 2. Let Ĵn be the feature subset maximizing Mn

over all binary feature subsets with k elements. Let J ∗
be the optimum feature subset as in (6). Then, given any
δ ∈ (0, 1), with probability at least (1 − δ), the following
bound holds

LD(Ĵn) ≤ LD(J ∗) +
√

λ(k)

n− 1
log(

d

δ
) +O(n−γ),

where γ ∈ (0, 1/2) and λ(k) = 8 k22kc2k, with ck =∆

maxS⊆[d],|S|≤k‖ψS‖2∞.

The exhaustive search over all k-element feature subsets
is computationally expensive. Hence, in the next section,
we present a few approximation methods and propose our
algorithm.

4. Proposed Algorithm
We build upon our Fourier expansion and propose our Su-
pervised Fourier Feature Selection (SFFS) algorithm. To
reduce the computational complexity, we propose a few
approximations. We start with approximating the orthogo-
nalization process.

4.1. Implementing the Orthogonalization

We propose a recursive formula to perform the orthogonal-
ization. Let bj,i = 〈χSj , χSi〉, and define aj,i = 〈ψSj , χSi〉.
With this notation, ψ̃Si in (4) can be written as

ψ̃Si = χSi −
∑
j<i

aj,iψSj .

Hence, we only need to compute aj,i’s. Note that since
ψSi ’s are orthonormal, then we obtain that

‖ψ̃Si‖22 = bi,i −
∑
j<i

a2
j,i.

Further, the coefficients aj,i can be calculated recursively as

aj,i =
1√

bj,j −
∑
r<j a

2
r,j

(
bj,i −

∑
`<j

a`,ja`,i

)
. (8)

With this formula, we first compute an empirical estimate
of bj,i’s, denoted by b̂j,i. Hence, given the training samples,
we compute

b̂j,i =
1

n

∑
`

χSj (x`)χSi(x`).

Then, we compute an estimation of aj,i’s (denoted by âj,i)
by calculating (8) with bj,i and aj,i replaced by b̂j,i and âj,i,
receptively. This approach is presented in Procedure 1 with
additional approximation techniques explained below:

First, we approximate (4) by declaring ψ̂S as trivial, if
‖ψ̃S‖2 ≤ ε, where ε ∈ (0, 1) is a parameter. As a result,
we declare a feature j to be redundant if ‖ψ̃{j}‖2 ≤ ε. In
our earlier work, we show in (Heidari et al., 2021) that the
FOURIER-ORTH can be used as a standalone unsupervised
feature selection algorithm.

Further, we apply a fixed-depth search and limit the size
of the subsets involved in the orthogonalization. Given a
parameter t ≤ d, the orthogonalization is performed only
on feature subsets of size at most t. For that, we use the
standard ordering as in (3), but restricted to subsets of size at
most t. For most practical purposes, we set t ≤ 3. With that,
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the search space is reduced to
(
d
t

)
. Further, this limitation

is sufficient when the dependencies across the features are
bounded to at most t features.

Procedure 1 FOURIER-ORTH

1: Input: n training samples xi ∈ Rd, depth parameter
t ≤ d, and redundancy threshold ε ∈ (0, 1)

2: Output: Features’ measures norm(j), j = 1, 2, ...d
3: Generate all subsets Si ⊆ [d] with size at most t and

with the standard ordering as in (3).
4: Compute the matrix B̂ with elements:

b̂j,i ←
1

n

n∑
l=1

[ ∏
u∈Sj

xlu
∏
v∈Si

xlv

]
.

5: Set Â← B̂
6: for row j of Â do
7: update the jth row: Âj,∗ ← Âj,∗ −

∑
`<j â`,jÂ`,∗

8: Compute norm(Sj)←
√

[b̂j,j −
∑
r<j â

2
r,j ]

+

9: if norm(Sj) ≤ ε then
10: Set the jth row of Â zero: Âj,∗ ← 0
11: else
12: Normalize the jth row: Âj,∗ ← Âj,∗

norm(Sj)

13: end if
14: end for
15: Declare all j ∈ [d] with norm(j) ≥ ε as non-redundant.

For large dimensional datasets, we can further reduce the
complexity by partitioning the features. We randomly parti-
tion the features into multiple groups of approximately equal
size (say m features each). Then, we perform Procedure
1 on each group and remove the redundant features within
it. With this approach, the computational complexity with
depth parameter t and group size m is O(n d

mm
2t). The pa-

rametersm and t are chosen depending on the limitations on
running time. These parameters are typically chosen inde-
pendently of the size of the dataset. For instance, we choose
t ≤ 3 and m = 40 for our numerical results. Therefore, we
obtain a complexity linear in the size of the dataset.

As for interpretability, FOURIER-ORTH not only removes
redundant features but also extracts the equations describing
such redundancies through the matrix Â. This property
gives important information about the redundancy structure
of the dataset.

4.2. Feature Selection Algorithm

In this part of the paper, we combine FOURIER-ORTH (Pro-
cedure 1 with the feature subset measure Mn as in (7) and
present our feature selection algorithm. We first perform
FOURIER-ORTH to remove the redundant features and then
apply Mn on the subsets of the remaining d̃ features to

select one with the highest score.

The measure Mn captures the joint effect of the candidate
feature subsets. However, to further reduce the running time,
we use a fixed-depth search. Instead of searching over all
k-element feature subsets, we choose to search over all t-
element subsets (say t = 3). For that, we calculate Mn(T )
for all t element feature subsets. Next, we rank these subsets
in descending order based on Mn. Then, starting from the
top, we take the union of T ’s to obtain a k-element feature
subset. With this approach, we present Algorithm 1. Note
that with t = 1, our search algorithm reduces to a feature-
ranking method. On the other hand, with t = k, we get the
exhaustive search over feature subsets of size k.

Algorithm 1 Supervised Fourier Feature Selection (SFFS)

1: Input: n training samples (xi, yi), desired number of
features k, and the depth parameter t ≤ k

2: Output: Feature subset Ĵn
3: Run FOURIER-ORTH(t) to get the non-trivial parities

and non-redundant features.
4: Construct all t-element subsets T of the non-redundant

features.
5: Rank all subsets T according to Mn as in (7).
6: If Ti are the subsets in the descending order, set Ĵn =⋃r

i=1Ti, where r chosen such that the union has k dif-
ferent elements.

7: Return Ĵn

Therefore, the computational complexity of SFFS algo-
rithm without FOURIER-ORTH and for a fixed parameter
t is O(nd̃t), where d̃ is the number of non-trivial features
declared from the orthogonalization (Procedure 1). Our nu-
merical results verifies that usually d̃ is much smaller than
d, see Table 2. As a result, with FOURIER-ORTH the overall
computational complexity of SFFS is O(nd+ nd̃t), that is
dominated by O(nd) for large datasets.

5. Related Works
The literature in this area is extensive. Thus, we only can
point out some of the best known and most relevant results.

The standard Fourier expansion on the Boolean cube has
been central in a wide range of applications such as com-
putational learning theory (Linial et al., 1993; Mossel et al.,
2003; 2004; Blais et al., 2010; Heidari et al., 2019), noise
sensitivity (O’Donnell, 2014; Kalai, 2005), information-
theoretic problems (Courtade & Kumar, 2014; Heidari et al.,
2021), and other applications (Aghazadeh et al., 2020). We
note that there are other forms of orthogonal decomposition,
including the Hoeffding-Sobel decomposition (Hoeffding,
1948; Sobol, 1993; Chastaing et al., 2012) and its general-
ization (Chastaing et al., 2012). However, such decompo-
sitions are basis-free. Our Fourier expansion is defined by

6



constructing a set of orthonormal basis functions, which
makes it suitable for feature selection.

Feature selection methods are usually classified into three
main groups: wrappers, filter, and embedded (Guyon & Elis-
seeff, 2003; Yamada et al., 2020a). In the wrapper method,
the feature subsets are evaluated directly by an induction
algorithm. In embedded methods, feature selection is per-
formed during the training process of the given learning al-
gorithm (see (Yamada et al., 2020b) and references therein).
However, such approaches are usually computationally ex-
pensive and, hence, prohibitive in large datasets. An alterna-
tive solution is the filter approach in which an intermediate
measure, independent of the induction learning algorithm,
is used to evaluate the feature subsets. Filter methods are
preferred as they are computationally more efficient and rel-
atively robust against overfitting. The challenge in this area
that remains open is to design a computationally efficient
measure that is provably related to the generalization loss.

Several measures has been introduced in the literature. Well-
known criteria for feature selection can be grouped into
similarity-based measures (e.g., Pearson correlation, Fisher
Score), information-theoretic measures (Vergara & Estévez,
2014; Koller & Sahami, 1996; Yu & Liu, 2004; Battiti, 1994;
Peng et al., 2005), and Kernel-based measures (Gretton et al.,
2005; Chen et al., 2017; Wei et al., 2016). Although correla-
tion criteria are computationally more efficient, they usually
are not able to detect nonlinear dependencies in features-
label relations. Methods based on kernels can detect the
nonlinear dependencies. However, the computational com-
plexity of computing a kernel grows super linearly, if not
quadratic, with the number of the samples (Cesa-Bianchi
et al., 2015). Mutual Information (MI) criteria, on the other
hand, can detect nonlinear dependencies with lower com-
putational complexity (Battiti, 1994). In addition, mutual
information can be used to bound the Bayes misclassifica-
tion rate (Feder & Merhav, 1994; Cover & Thomas, 2006).
However, estimating multi-variate mutual information is
known to be a difficult task with high sample complexity.

In the unsupervised settings, some recent approaches worth
mentioning are pseudo-label based and spectral/manifold
based. Methods in the first approach attempt to generate
pseudo-labels via clustering (Li et al., 2012; Yang et al.,
2011). The second approach usually assumes linear depen-
dencies among the feature (Feng et al., 2019; Arai et al.,
2016; Derezinski et al., 2020).

6. Numerical Experiments
In this section, we present our numerical results and com-
pare the performance of our SFFS algorithm with several

well-known methods for supervised feature selection1.

We test the algorithms on synthetic and real-world datasets
as given in Table 1. The real-world datasets are benchmarks
and taken from (Li et al., 2018) and the UCI repository (Dua
& Graff, 2017). The synthetic datasets are described in the
following.

Synthetic datasets: We generate two synthetic datasets
(called E1 and E2) to test the ability of feature selection
algorithms on capturing nonlinear feature-label dependen-
cies. Each dataset consists of 1000 samples each having
20 features distributed according to uniform distribution
over {−1, 1}20 for E1 and N(0, I20) for E2. The label is a
function of only (X1, X2, ..., X6). We generate the labeling
function randomly and independently of the algorithms. To
control the level of the nonlinearity of this function, we
generate it according to an Erlang distribution described in
Section E of Supplementary Material.

6.1. Performance of FOURIER-ORTH Procedure

We start with the numerical results for the FOURIER-ORTH
procedure. Table 2 shows the number of non-redundant
features (d̃) declared by Procedure 1 and compares it with
d, the original number of features in the datasets. This table
confirms that d̃ is usually much smaller than d for large
datasets, implying that many of the features are redundant
according to the Fourier expansion.

6.2. Comparisons of the Feature Selection Algorithms

Next, we present our comparison of the feature selection
algorithms in terms of the classification accuracy. We use
SFFS algorithm (with t = 1, 2) and compare it with the
bench-marking algorithms such as ReliefF (Kira & Rendell,
1992), mRMR (Peng et al., 2005), MI (Kraskov et al., 2011),
RFS (Nie et al., 2010), and CCM (Chen et al., 2017)2.

Figure 1 shows the average classification accuracy for var-
ious numbers of selected features (k). The experiments
employ 5-fold cross-validation with feature selection and
the support vector machine (SVM) classifier with radial
basis function as a kernel. The implementation details are
given in the Supplementary Material.

For real-world datasets, as Figure 2 shows, we obtain con-
sistently good results in all the datasets and leading in some
ranges of k. The compared algorithms perform well only
in some of the datasets, while our algorithms have reli-
able, steady performance in all the cases. For instance,
we observe a dominant performance by our SFFS in the

1The source codes are available at https://github.com/jithin-k-
sreedharan/Fourier feature selection.

2We were unable to run CCM for USPS with its author’s origi-
nal implementation.
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Table 1: Properties of the tested datasets.

dataset E1 E2 USPS Isolet COIL20 Covertype Australian Musk ALL AML
Features 20 20 256 617 1024 54 14 166 7128
Samples 1000 1000 9298 1560 1440 581 690 467 72

Table 2: Number of non-trivial features (d̃).

E1 E2 USPS Isolet COIL20 Covertype Australian Musk ALL AML

d 20 20 256 617 1024 54 14 166 7128
d̃ 20 20 93 309 331 34 12 35 39
d̃/d 1 1 0.36 309 0.50 0.63 0.86 0.21 0.005
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Figure 1: Classification accuracy (vertical axis) versus the number of selected features k (horizontal axis). There are overlaps
between SFFS(t = 3) with ReliefF and SFFS(t = 1) with MI for the E1 and E2 datasets. Also SFFS(t = 1) overlaps with
SFFS(t = 2) for USPS and Musk datasets.
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Figure 2: The effect of the depth parameter t in the performance of SFFS algorithm. The figure shows classification accuracy
(vertical axis) versus different values of t for the ALL AML, Covertype, and Australian datasets.
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Table 3: Comparison of running times for the tested feature selection algorithms. The numbers are in seconds.

Covertype Australian Musk ALL AML USPS Isolet COIL20

SFFS (t=1) 2.7 3.5 3.3 303 298 74.26 41
SFFS (t=2) 3.1 3.9 4 378 378 74.35 65

RFS 6 4 2 447 1010 58 62
mRMR 1.41 0.89 56 300 510 3585 4238
relifF 1.33 1.88 1.3 4.35 550 36.5 41.42

MI 0.92 0.32 3.05 280 172 77 104
CCM 48 157 159 135 – 3276 3662

Isolet dataset for k > 40 and in the USPS dataset for
k < 50. Moreover, in the Musk dataset, we observe a
notable performance improvement for k ∈ [25, 50]. Note
that SFFS(t = 1) and SFFS(t = 2) are overlapping in the
USPS and Musk datasets for many values of k. Also, there
are overlaps between SFFS(t = 3) with ReliefF and and
SFFS(t = 1) with MI for the E1 and E2 datasets.

We also run SFFS with t = 3 on the synthetic datasets E1
and E2. As explained before, in E1 and E2, there are no
redundant features, and there are only six relevant features.
This is verified in Figure 1, where the maximum accuracy
(100%) is obtained using SFFS at around k = 6. This obser-
vation also implies that SFFS detects all irrelevant features
in these datasets. Further, we observe a significant perfor-
mance gap between our approach and the other algorithms
except for ReliefF. The low accuracy of other algorithms
(below 60% in E2) suggests their failure to find the relevant
features in these datasets. We believe this is due to the highly
nonlinear feature-label relations in such datasets imposed by
the Erlang distribution in our construction. In general, we
do not see any reason for not having high nonlinearity in the
real data sets. This observation calls for more sophisticated
approaches in feature selection to address highly nonlinear
relations.

6.3. Effect of the Depth Parameter t

Next, we analyze the effect of the depth parameter (t) on
the algorithm’s performance. For that, we fix k and run the
SFFS algorithm with different values of t on the ALL AML,
Covertype, and Australian datasets.

Figure 2 presents the resulted classification accuracy versus
t for various values of the number of selected features. It
is observed that the performance of SFFS is relatively un-
changed for large values of t. This observation suggests
that low values of t are sufficient to get a satisfactory per-
formance for real datasets. However, it is expected that one
could find/design a dataset for which larger values of t are
required to get a higher accuracy for SFFS.

We also note that in some cases as t increases, the per-
formance drops because the high value of t demands more

number of samples. The reason is that there are more Fourier
coefficients to estimate.

6.4. Comparison of Running Times

Lastly, in Table 3, we compare the running time of SFFS
with other algorithms and on the datasets we tested. For the
existing algorithms, the implementations are taken from (Li
et al., 2018) and correspond to the original implementations,
except for mRMR and CCM, where we used the optimized
implementations from the authors.

7. Conclusion
In this work, we proposed a Fourier-based approach for fea-
ture selection. First, we presented a Gram-Schmidt orthogo-
nalization using which we developed a Fourier expansion
for functions of correlated binary random variables. We
characterized the optimal feature subset and the minimum
misclassification accuracy in the Fourier domain. Then, we
proposed a measure for selecting subsets of features. The
measure is an empirical estimate of the minimum misclassi-
fication probability in the Fourier domain. We proved that
this measure finds asymptotically optimal feature subsets in
binary settings. Further, we propose an algorithm (SFFS)
for feature selection based on this measure and the orthogo-
nalization. Lastly, we numerically analyzed the SFFS algo-
rithm and showed performance improvements compared to
several well-known feature selection algorithms.
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Kraskov, A., Stögbauer, H., and Grassberger, P. Erratum:
Estimating mutual information [phys. rev. e 69, 066138
(2004)]. Physical Review E, 83(1):019903, 2011.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P.,
Tang, J., and Liu, H. Feature selection: A data perspective.
ACM Computing Surveys (CSUR), 50(6):94, 2018.

Li, Z., Yang, Y., Liu, J., Zhou, X., and Lu, H. Unsupervised
feature selection using nonnegative spectral analysis. In
Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, AAAI’12, pp. 1026–1032. AAAI
Press, 2012.

Linial, N., Mansour, Y., and Nisan, N. Constant depth
circuits, Fourier transform, and learnability. J. ACM, 40
(3):607–620, 1993.

Mossel, E., O’Donnell, R., and Servedio, R. P. Learning
juntas. In Proc. ACM Symp. on Theory of Computing, pp.
206–212, 2003.

10

http://archive.ics.uci.edu/ml
http://www.jstor.org/stable/2235637
http://www.aaai.org/Library/AAAI/1992/aaai92-020.php
http://www.aaai.org/Library/AAAI/1992/aaai92-020.php


Mossel, E., O’Donnell, R., and Servedio, R. A. Learning
functions of k relevant variables. J. Comput. Syst. Sci, 69
(3):421–434, 2004.

Nie, F., Huang, H., Cai, X., and Ding, C. H. Efficient and
robust feature selection via joint l2,1-norms minimization.
In Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J.,
Zemel, R. S., and Culotta, A. (eds.), Advances in Neu-
ral Information Processing Systems 23, pp. 1813–1821.
Curran Associates, Inc., 2010.

O’Donnell, R. Analysis of boolean functions. Cambridge
University Press, 2014.

Peng, H., Long, F., and Ding, C. Feature selection based
on mutual information criteria of max-dependency, max-
relevance, and min-redundancy. IEEE Transactions on
pattern analysis and machine intelligence, 27(8):1226–
1238, 2005.

Sobol, I. M. Sensitivity estimates for nonlinear mathemati-
cal models. Mathematical modelling and computational
experiments, 1(4):407–414, 1993.

Solorio-Fernández, S., Carrasco-Ochoa, J. A., and Martı́nez-
Trinidad, J. F. A review of unsupervised feature selection
methods. Artificial Intelligence Review, 53(2):907–948,
2020.
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