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ABSTRACT

Interpretability of epidemiological models is a key consideration, especially when
these models are used in a public health setting. Interpretability is strongly linked
to the identifiability of the underlying model parameters, i.e., the ability to estimate
parameter values with high confidence given observations. In this paper, we define
three separate notions of identifiability that explore the different roles played by
the model definition, the loss function, the fitting methodology, and the quality and
quantity of data. We define an epidemiological compartmental model framework
in which we highlight these non-identifiability issues and their mitigation.

1 INTRODUCTION

The global COVID-19 pandemic has spurred intense interest in epidemiological compartmental
models (Thompson, 2020; Brauer, 2008). The use of epidemiological models is driven by four
main criteria: expressivity to faithfully capture the disease dynamics; learnability of parameters
conditioned on the available data; interpretability to understand the evolution of the pandemic; and
generalizability to future scenarios by incorporating additional information.

Compartmental models are popular because they are relatively simple and known to be highly ex-
pressive and generalizable. However, their interpretability and learnability depend strongly on the
alignment between data observations and model complexity. Different choices of model parame-
ters can often lead to (approximately) the same forecast case counts, leading to what is commonly
referred to as non-identifiability (Raue et al., 2009; Jacquez & Perry, 1990). The problem of non-
identifiability is only exacerbated with increased model complexity.

This lack of identifiability is detrimental because (a) parameter distributions estimated from the
observed data tend to be biased with large variances, thus precluding easy interpretation, and (b) non-
identifiable models typically have reduced accuracy on long-time forecasts due to the high parameter
variance. This phenomenon is illustrated in Figure 1, where the forecasting errors between a non-
identifiable model and its reparametrized version (later shown to be identifiable) are compared.

Non-identifiability in epidemiological models is rooted in the model dynamics, in the fitting loss
function and methodology, and in the quality and quantity of data available. Identifiability is typi-
cally broadly classified into structural (i.e., purely model-dependent) (Reid, 1977; Massonis et al.,
2020) and practical (i.e., data-, loss- and fitting methodology-dependent), with the latter often de-
fined vaguely, and in the context of specific loss functions (Raue et al., 2009; Wieland et al., 2021).

Contributions. This paper delineates various general notions of model identifiability that are con-
textualized in compartmental epidemiological models, including a novel notion of statistical iden-
tifiability that depends on the loss function optimized in estimation, and an empirical framework
to assess practical identifiability in terms of the highest posterior density intervals. We study these
ideas in the specific context of a SEIR-like compartmental model (SEIARD) that was deployed in a
major densely populated city in India for case forecasting to inform capacity and policy decisions.
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Figure 1: Forecast error. Section 3 de-
fines “Original” and ”Reparam.”

Structural Statistical Practical

Model form
Loss function
Observation interval
Noisy data
Fitting method

Table 1: Notions of identifiability.

2 NOTIONS OF IDENTIFIABILITY

Consider a dynamical system M characterized by ẋ = f(x,θ), where x is the system state, ẋ the
time derivative, and θ the parameters. Let y(t) = g(x(t),θ) be the observation function that maps
state x to observations at time t. Combining these, we may express y(t) = h(x0,θ, t), where x0

is the initial state. Epidemiological compartmental models are dynamical systems in which states
correspond to compartmental population counts, with a subset or aggregates of these counts being
observed. We consider three notions of identifiability for such a system (Table 1).

Structural Identifiability. We say that a parameter θi in a model M is structurally identifiable
if for any θ in the domain, h(x̂0, θ̂, t) = h(x0,θ, t) ∀t =⇒ θ̂i = θi, i.e., distinct parameter
choices result in distinct observation series. Note that in partially observable systems, this notion of
identifiability also applies to components of the initial state x0 that are not observed. In linear time-
invariant systems (LTI), where ẋ = B(θ)x and y = C(θ)x, the resulting solution takes the form
x = eB(θ)tx0. Structural identifiability for this case is characterized in terms of the properties of
B(θ) and C(θ) (Kalman, 1959; Sontag, 2013). Recent works (Martinelli, 2020; Villaverde, 2019;
Massonis et al., 2020) extend these results to nonlinear systems and SEIR model variants.

Statistical Identifiability. We propose a new notion of identifiability that depends both on the
parametric form of the model and the statistical estimation process. Let yM (t) = h(x0,θ, t) denote
the model output and yD(t) the observations over a finite time horizon t ∈ [tb, te]. Parameter
estimation given the observations is carried out by optimizing a loss function L (·), i.e., θ∗ =

arg minθ∈Θ LD(θ) = arg minθ∈Θ
∑te
t=tb

L (yD(t), yM (t)) . We consider a parameter-wise loss
function, called the profile-likelihood (PL) of θi (Raue et al., 2009), defined as where θ−i = θ \ θi
denotes the complementary set of parameters. We say a parameter θi is statistically identifiable
within a domain Θi if L i

D(θi) is strictly convex with respect to θi ∈ Θi. Though this ensures a
unique global optimum, it does not necessarily imply joint convexity of LD with respect to θ.

Clearly, statistical identifiability implies structural identifiability, but the converse is not always true.
For example, a loss function with a flat extended minimum will lead to lack of statistical identifi-
ability even though the model itself is structurally identifiable. However, structural identifiability
does imply statistical identifiability for a LTI system with a strictly convex loss function, when
the number of observations at distinct times in D is at least equal to the rank of the observability
matrix (Villaverde, 2019; Kalman, 1959). The proof follows from the strict convexity of the loss
function, the convexity of the solution eB(θ)tx0 itself, and the fact that the composition of a convex
function with a convex non-decreasing function remains convex (Boyd et al., 2004).

Practical Identifiability Intervals. Models could be both structurally and statistically identifiable,
but parameter fitting could nevertheless present practical challenges, related to application-specific
tolerance to error on the fitted parameters (Roosa & Chowell, 2019). This situation is captured
through the notion of practical identifiability. Given a model M , data D, loss function LD, and fit-
ting methodH , let pD(θi) be the resulting posterior distribution of θi. Following Raue et al. (2009),
we characterize practical identifiability in terms of the α-identifiability intervals of the parameters,
in two different ways.

The first approach defines this interval in terms of level sets of the loss function, i.e.,
J iPL(α,LD, H) = {θi|L i

D(θi) ≤ L α
D}, where L α

D is the α-quantile of LD(·), defined as the
level set with probability mass α as given by the posterior distribution. The special case of the

2



Published as a conference paper at ICLR 2021

S E I

Afatal

RArecov

D

𝛾(1-	Pfatal)

𝛾Pfatal

Trecov

Tfatal

ßSI σ

Figure 2: SEIARD Model. Figure 3: SEIARD Dynamics Matrix (LTI
when S ' N )

squared loss where L α
D is the sum of LD(θ∗) and the α-quantile of χ2 distribution with a single

degree of freedom is discussed in (Wieland et al., 2021; Raue et al., 2013).

The second, Bayesian approach defines the α-identifiability interval J iPP (α,LD, H) as a highest
posterior density interval (HPDI) (Wright, 1986) with probability mass α. When L i

D(·) is strictly
convex in θi and the marginal posterior distribution piD(θi) is monotonically decreasing with respect
to L i

D(·), the two definitions can be shown to be equivalent based on the convexity properties and
one-one association of the corresponding level sets (Boyd et al., 2004). Empirical analysis in Raue
et al. (2013) suggests a similar relationship. See Section A.4 for a detailed analysis.

3 NON-IDENTIFIABILITY IN EPIDEMIOLOGICAL MODELS

SEIARD Model. Figure 2 shows the SEIARD model, which is an extension of the well-known
SEIR model (Hethcote, 2000). The S (Susceptible), E (Exposed), and I (Infectious) compart-
ments and their associated parameters (transmission rate β, incubation period Tinc = σ−1, and
infectious period Tinf = γ−1) are defined as in the SEIR model. The post-infectious stage con-
sists of parallel paths through Afatal or Arecov, depending on the eventual outcome: fatality (D)
with probability Pfatal or recovery (R), with Tfatal and Trecov being the respective time dura-
tions. Observed case counts are mapped to compartment populations as follows: recovered cases
(R)= |R|, deceased cases (D)= |D|, active cases (A)= |Arecov| + |Afatal|. Defining state
x = (S,E, I, Arecov, Afatal, R,D) and observations y = (Arecov + Afatal, R,D), the model dy-
namics (Figure 3) reduces to that of an LTI (Kalman, 1959) in the early stages of the epidemic,
because one can then set S ' N to first approximation, thus yielding Ṡ = −βSI/N ' −βI .

Parameter Estimation. In our experiments, synthetic data was simulated from the SEIARD model
using realistic parameters (Section A.3). We treat the initial state values of E (E0) and I (I0) com-
partments as unobserved parameters. We estimate model parameters (including E0 and I0) by opti-
mizing the mean absolute percentage error (MAPE) between the true and predicted values for each
of the three observed time series in y as well as that of the total count (sum of these three). Fitting is
performed using two different approaches: Sequential Model Based Optimization (SMBO) based on
Tree-structured Parzen Estimators as implemented in the HyperOpt library (Bergstra et al., 2013),
and an MCMC-based sampling approach (see Section A.2).

Identifiability in SEIARD Model. Structural identifiability analysis similar to that in Massonis
et al. (2020) indicates that the SEIARD model is structurally non-identifiable. This may be attributed
to the unobserved compartments (E, I) as well as the split between Arecov and Afatal. A larger fa-
tality rate with a larger delay Tfatal would be indistinguishable from a smaller fatality with a smaller
delay just by observing the active, deceased and recovery counts. This structural non-identifiability
also manifests as statistical non-identifiability, as can be seen in the shape of the profile likelihood
curves corresponding to the non-reparametrized (Original) SEIARD model in Figure 4(a) and 4(b).
Similarly, the confidence intervals of the parameters of this model, as shown in Figure 4(a), 4(b),
and 4(d), are broad, indicating considerable practical non-identifiability.

Improving Identifiability in SEIARD Model. Non-identifiability in dynamical systems can often
be attributed to correlated parameters. Figure 4(e) shows the correlation between parameters con-
structed using samples from the joint posterior distribution. A common way (Joubert et al., 2020) to
reduce non-identifiability is thus through reparameterization of models by constraining a parameter
subset. The choice of parameters to constrain may be informed by secondary information sources.
For epidemiological models, parameters such as the incubation period Tinc, infectious period Tinf ,
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Figure 4: Panels (a) and (b) show PL curves for Pfatal and β respectively. The horizontal black
line depicts the 95% quantile loss as defined in Section 2, while the vertical gray lines are the true
values given in Section A.3. Error bars indicate confidence intervals based on where the curves
intersect the black line; an arrow head indicates that the interval extends beyond the plotted range.
Panel (c) shows the negative logarithm of the posterior density of β; the corresponding posterior
density is shown in panel (d). Error bars in (d) refer to the 95%-HPDI (Section 2) of β. Panel (e) is
the correlation matrix of parameter samples obtained via MCMC sampling for the Original model.
Panel (f) shows PL curves of β for the Reparam. model for different training durations.

and the time to death Tfatal can be estimated from medical literature or line lists of representative
case data. A model where these parameters are fixed to their true values (see Section A.3) is referred
to as the reparameterized (Reparam.) SEIARD model, which can be shown to be structurally identi-
fiable (Massonis et al., 2020). The PL curves for the reparameterized model in Figure 4(a) and 4(b),
and the posterior density plot in Figure 4(d) have relatively tighter confidence intervals, indicating
an improvement in practical identifiability. Additionally, Figure 4(c) empirically indicates that the
PL curves and the negative logarithm of the posterior density give similar information.

Data Dependence of Identifiability Figure 4(f) shows the PL curves for the reparameterized model
with various training durations, indicating increased practical identifiability with more observations.
A larger set of observations may therefore serve to further fine-tune parameters in such a setting.

4 CONCLUSIONS AND FUTURE WORK

We presented a novel framework to analyze identifiability of model parameters in epidemiological
models, using the various lenses of model structure, loss functions and fitting methodology, and data.
While the notions of structural and statistical identifiability are useful for detecting and resolving
non-identifiability in an analytic fashion via reparameterization, practical identifiability intervals
function as an effective tool for fine-tuning the parameter estimation process. We present these ideas
and empirical results in the specific context of the SEIARD compartmental model. In the future, we
plan to explore connections between different types of identifiability and empirically analyze the
identifiability of multiple SEIR variants on real and synthetic data.
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A APPENDIX

A.1 SEIARD MODEL DYNAMICS

The dynamical equations governing the transitions in SEIARD model (Figure 2) are

dS

dt
= −β IS

N
;
dE

dt
= β

IS

N
− σE;

dI

dt
= σE − γI, (1)

dArecov

dt
= (1− Pfatal) · γI −

Arecov

Trecov
, (2)

dAfatal

dt
= Pfatal · γI −

Afatal

Tfatal
, (3)

dR

dt
=
Arecov

Trecov
;
dD

dt
=
Afatal

Tfatal
, (4)

where N is the city population, β, σ, and γ are the standard epidemiological parameters for a SEIR model,
Pfatal is the transition probability to the mortality branch, and Trecov and Tfatal are timescales that govern
transitions out of the Arecov and Afatal compartments. Variables S, E, I , Arecov, Afatal, R, D denote the
populations of the similarly named compartments.

In the early stages of the epidemic, when S ' N , the model dynamics reduces to that of an LTI, with ẋ =
B(θ)x and y = C(θ)x. For our model, we have B(θ) and C(θ) as shown below:

B(θ) =



0 0 −β 0 0 0 0
0 −1/Tinc β 0 0 0 0
0 1/Tinc 1/Tinf 0 0 0 0
0 0 (1− Pfatal)/Tinf −1/Trecov 0 0 0
0 0 Pfatal/Tinf 0 −1/Tfatal 0 0
0 0 0 1/Trecov 0 0 0
0 0 0 0 1/Tfatal 0 0


, C(θ) =

0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



A.2 MCMC IMPLEMENTATION DETAILS

Let X[t] = [Xh[t]]h∈H be a multivariate time series with Xh[t] denoting the hth compartment time-series, and
H be the set of indices of components. Let the fitting period be given by [ti, tj ]. The key components of our
MCMC-within-Gibbs sampling are as follows.

Likelihood function. We assume a likelihood function of the form

P (X | θ, s) =
∏
h∈H

tj∏
t=ti+1

N (ẑh,θ[t] | zh[t], s), (5)

whereN (z | µ, σ2) denotes the Normal distribution pdf with mean µ and variance σ2 following an appropriate
conjugate prior. Further, zh[t] = log(Xh[t]) − log(Xh[t − 1]), and ẑh,θ[t] is the forecast equivalent of zh[t]
and s is the variance of the normal likelihood function, which is discussed later in this section.

Proposal distribution. At iteration k, we generate the samples from the proposal distribution for accept-reject
step as

θ ∼ Q(θk−1,Σprop,θmin,θmax) (6)

where θk−1 is the parameter vector chosen at k−1, andQ(·) is the pdf of a multivariate truncated Gaussian with
the parameter range [θmin,θmax] and covariance matrix Σprop as listed in Table 2 (MCMC Proposal Variance).

We further assume that s has the conjugate prior s ∼ InvGamma(u, v) where u = 40 and v = 2/700 are
hyperparameters. Thus, it is straightforward to show, by multiplying the Normal likelihood with the prior, that
if the MCMC chain has sampled parameters θk, the sample sk ∼ P (sk | θk, X) is also drawn from an Inverse
Gamma distribution with parameters

uk = u+ 2(tj − ti − 1), vk = v +
∑
h∈H

tj∑
t=ti+1

(zh[t]− ẑh,θk [t])2

2
.
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A.3 HYPERPARAMETERS

Table 2 contains the parameter ranges and values used for all experiments in Section 3. The first row enumerates
the true value of parameters used to simulate the synthetic dataset while the second lists the search space for
each parameter while fitting. The proposal variance used in Equation 6 is listed in the bottom row of Table 2.
Table 3 contains all the hyperparameters used to generate the synthetic dataset. R0, A0, D0 denote the initial
values of recovered, active and deceased cases and N denotes total population.

Parameter

β Tinc Tinf Trecov Tfatal Pfatal E0 I0

True Value 0.25 5.10 6.60 14.00 10.00 0.03 1.00 1.00
Search Space [0, 1] [1, 100] [1, 100] [1, 100] [1, 100] [0, 1] [0, 5] [0, 5]
MCMC Proposal Variance 0.10 4.00 4.00 4.00 4.00 0.01 0.50 0.50

Table 2: Parameters used for experiments in Section 3

Hyper Parameter

R0 A0 D0 N Horizon

Value 0 5 0 107 400 days

Table 3: Hyperparameters used to generate the synthetic dataset.

A.4 DISCUSSION ON PRACTICAL IDENTIFIABILITY INTERVALS

We briefly outline the connection between the Bayesian and the loss function-based notions of practical identi-
fiability intervals in Section 2 for clarity.

1. For a strictly convex Lipschitz continuous real-valued function LD : Θ 7→ R, with a global mini-
mum c∗, its level sets {θ ∈ Θ|LD(θ) ≤ c} for c ∈ [c∗,∞) are (possibly multi-dimensional) convex
regions nested within each other (Boyd et al., 2004).

2. Given a probability distribution q(θ) that is non-zero on Θ, every level set of LD(θ) has a well-
defined probability mass resulting in a bijection QL : [0, 1] 7→ [c∗,∞). In other words, for any
α ∈ [0, 1], there is a unique level and a unique level set of LD with probability mass equal to α.

3. For any function h : Θ 7→ R that can be expressed as h(θ) = g(LD(θ)) for a strictly monotonically
increasing function g(·), the level set {θ ∈ Θ|LD(θ) ≤ c} is the same as {θ ∈ Θ|(θ) ≤ g(c)} for
c ∈ [c∗,∞). Due to the mapping between the level sets, the uniqueness of regions with probability
mass equaling α holds true even for h(·).

4. When LD(θ) is the sum of the negative log-likelihood and appropriate regularization terms corre-
sponding to the prior on θ, then the posterior distribution pD(θ) is strictly monotonically decreasing
with respect to LD(θ).

5. With the above definition of LD(θ), since−pD(θ) turns out to be a strictly monotonically increasing
function of LD(θ), the level sets map to each other. Hence, for a given α ∈ [0, 1], it is the same
unique convex region that corresponds to a level set of LD and the α-HPDI (highest posterior density
interval) of pD(θ).

6. Since LD(·) is strictly convex, the level sets corresponding to parameter-wise loss or profile likeli-
hood L i

D(·) are contiguous intervals that are the just the 1-D projections of the level sets of LD(·)
along the ith dimension for the same level value .

7. On the other hand, the projection of the credible intervals from pD(θ) on to the ith dimension do
not exactly correspond to that of the marginal posterior piD(θi). For α close to 1, these intervals are,
however, approximately equal as reflected in the empirical analysis with α = 0.95.
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