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Abstract—In temporal ordered clustering, given a single snap-
shot of a dynamic network in which nodes arrive at distinct time
instants, we aim at partitioning its nodes into  ordered clusters
C1 ≺ · · · ≺ C such that for 8 < 9 , nodes in cluster C8 arrived
before nodes in cluster C9 , with  being a data-driven parameter
and not known upfront. Such a problem is of considerable
significance in many applications ranging from tracking the
expansion of fake news to mapping the spread of information.
We first formulate our problem for a general dynamic graph,
and propose an integer programming framework that finds the
optimal clustering, represented as a strict partial order set,
achieving the best precision (i.e., fraction of successfully ordered
node pairs) for a fixed density (i.e., fraction of comparable
node pairs). We then develop a sequential importance procedure
and design unsupervised and semi-supervised algorithms to
find temporal ordered clusters that efficiently approximate the
optimal solution. To illustrate the techniques, we apply our
methods to the vertex copying (duplication-divergence) model
which exhibits some edge-case challenges in inferring the clusters
as compared to other network models. Finally, we validate the
performance of the proposed algorithms on synthetic and real-
world networks.

Index Terms—Clustering, dynamic networks, unsupervised
learning, semi-supervised learning, temporal order

I. INTRODUCTION

The clustering of nodes is a classic problem in networks.
In its typical form in static networks, it finds communities
where methods like spectral clustering, modularity maximiza-
tion, minimum-cut method, and hierarchical clustering are
commonly used [1].

However, in dynamic networks that grow over time with
nodes or edges getting added or deleted, the criterion of
clustering based on its temporal characteristics finds significant
relevance in practice since it helps us to study the existence
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of certain network structures and their future behavior. One
approach to reason about the history of dynamic networks
via clustering is guided by the problem of node labeling
according to their arrival order when only the structure of the
final snapshot of the network is provided. The availability of
merely structure means that either we are given an unlabeled
graph or the current node labels do not present any historical
information. As it turns out, in many real-world networks and
graph models, it is impossible to find a complete order of
arrival of nodes due to a large number of symmetries inherent
in the graph [2], [3]. Figure 1 shows an example. In such cases,
it is essential to classify nodes that are indistinguishable them-
selves in terms of arrival order into clusters {C8}. Furthermore,
the formed clusters also will be ordered as C1 ≺ C2 ≺ · · · so
that for any 8 < 9 , all the nodes in the cluster C8 are estimated
to arrive earlier than all the nodes in the cluster C9 , and all
the nodes inside each cluster are considered to be identical in
arrival order. We call such a clustering scheme as temporal
ordered clustering.
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Fig. 1: Example showing how temporal clustering arises: a) the input
graph without labels. b) and c) arbitrary labellings of arrival order
with 1 representing the earliest arrival and 8 for the latest arrival. In
b) and c), the last two arrived nodes 7 and 8 have the same set of
neighbors. If we simulate the process of evolution starting from node
1, we observe that graphs in b) and c) at time 7 (i.e., with nodes 1−7)
are identical. Thus, nodes 7 and 8 in b) and c) are indistinguishable
as to which arrived early between them (this observation holds for
any labeling on the input graph), and the nodes behind these two
labels are part of a temporal cluster.

Temporal ordered clustering is related to many applications
in practice. For example in online social networks, it can be
useful to disseminate specific information or advertisements
targeted at nodes that arrived around the same time. In rumor
or epidemic networks, temporal ordered clustering can assist
in identifying the sources and carriers of false information.

One of the major applications of temporal ordered clustering
is in biological networks, especially protein-protein interaction
(PPI) networks, as it is a difficult task to recover the history
Our clustering identifies the evolution of biomolecules in
the network and helps in predicting early proteins that are
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 Eukaryota Opisthokonta Ascomycota SCHPOCellular Organisms

Fig. 2: PPI network of Schizosaccharomyces pombe, fission
yeast, with nodes colored and classified according to their
estimated ancestral class, taxons (induced subgraph on 300
proteins). The clusters (taxons) are ordered according to their
estimated phylogentic age as follows: Cellular Organisms ≺
Eukaryota ≺ Opisthokonta ≺ Ascomycota ≺ SCHPO.

known to be preferentially implicated in cancers and other
diseases [4], [5], [6]. Understanding of the ancestral structure
of interaction networks would immensely enhance the current
research in discovering the processes behind the evolution
of cellular systems. Moreover, recovery of the phylogenetic
history of proteins in the PPI network reveals the functional
modules. With our clustering scheme, we segregate the pro-
teins into non-overlapping families of homologous proteins
and the proteins in each cluster are believed to have descended
from a common ancestral protein. Each of such clusters
represents a taxon in the phylogenetic tree. An example of
such recovery is shown in Figure 2. Here, the taxon of each
protein and its phylogenetic age and order is estimated via
a method outlined in [7]. Later in Section VI-B, we present
the results of temporal ordered clustering on PPI networks of
three species.

A. Our contributions

The main aim of our clustering formulation is to charac-
terize its inherent limits via deriving the maximum accuracy
that can be achieved for the number of comparable node pairs
in the given cluster structure, and to develop algorithms for
recovering the history of a dynamic network.

• In Sections II and III we provide a general framework and
derive an optimization problem for finding temporal ordered
clusters in dynamic networks when only the final snapshot
of its evolution is provided. Due to the high computational
complexity involved in solving it, we reformulate the prob-
lem in terms of partial orders – for any node pairs (D, E), a
partial order f defines an order D <f E in which node D is
specified to arrive earlier than node E. Such a partial order
naturally translates into clusters of nodes and introduces an
order among them.

• Both the optimization problems depend on the knowledge
of the probabilistic evolution of the graph model and the
probability that any node D is older than any other node E,
denoted as ?D,E . Therefore, in Section III-C we design a
sequential importance sampling algorithm to estimate ?D,E
for any general graph model, and prove its convergence.
The solution to a linear programming relaxation of the
original optimization problem with coefficients as estimated
?D,E , presents an upper bound on the precision, a measure
of the quality of temporal ordered clustering we define in
Section II-B.

• In Section IV, we propose approximate unsupervised so-
lutions for temporal ordered clustering that are based on
?D,E values estimated from the sequential importance sam-
pling procedure, instead of solving the original optimization
problems. Our experiments in Section VI-A show for small
networks, these algorithms perform close to the theoretical
bound outlined by the solution to the optimization problem.
To further assess their performance, we also compare them
to the algorithms based on certain properties of the network
that are believed to be related heuristically to the age of the
nodes (e.g. degrees, intersections of neighbor sets, etc).

• In Section IV-B, we develop a semi-supervised technique
to include any partial information, in the simplest case
provided by a set of perfect pairs (i.e. pairs to be guaranteed
to occur in the ordering), into the ?D,E -based algorithms.
The experimental results show the improvement of the
quality of solutions when the number of (random) perfect
pairs provided as external knowledge.

• In the second part of the paper (Sections V and VI), as an
application of the proposed general technique, we focus on
duplication-divergence or vertex copying dynamic network
model (DD-model) [8] in which, informally, a new node
copies the edges of a randomly selected existing node and
retains them with a certain probability, and also makes ran-
dom connections to the remaining nodes (see Section V-A
for details). The DD-model poses unique challenges for
temporal ordered clustering in comparison with other graph
models because of the features listed below:
– Non-equiprobable large number of permutations: In many

of the graph models including the preferential attachment
and Erdős-Rényi graph models, all the feasible permu-
tations of the same structure representing node arrival
orders are equally likely [2]. Later in the paper, we show
with a counterexample that this is not the case in the
DD-model. In other words, unlike in our previous work
[9], we do not assume the isomorphic graphs that have
positive probability under the graph model have the same
probability. Moreover, in the DD-model, all the permuta-
tions of node labels with = letters are valid unlike some
models like the preferential attachment model; hence the
effective space of total orderings is =!. Thus the DD-
model stands as a corner case in the problem of node
arrival order inference.

– Large number of symmetry: We provide evidence of
a large number of automorphisms in a duplication-
divergence graph, whereas it is known that Erdős-Rényi
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and preferential attachment graphs are asymmetric (when
the automorphism group contains only the identity per-
mutation) with high probability [2], [10].

– Ineffectiveness of degree-based techniques: In some mod-
els (including the preferential attachment model), the old-
est nodes have larger expected degrees than the youngest
nodes over time, with high probability. But it is known
that in the DD-model the average degree does not exhibit
such a consistent trend [11], [12]. Thus any degree-based
method is going to fail in the DD-model.

B. Related works and novelty in this work

This work covers the following range of topics.
1) Temporal or dynamic networks and graph models: In

practice we encounter a lot of areas of scientific interest with
networked data in which the structure of interactions varies
over time [13], [14], [15], [16]. The pivotal influence of the
temporal networks has seen in areas such as biochemical pro-
cess (e.g., protein-protein interaction networks), epidemiology
(e.g., disease spreading networks) or social sciences (e.g.,
friendship, human interaction or social influence networks)
[17], [18], [19]

The representations of such temporal networks vary a lot.
They are either described as graphs on a fixed number of nodes
with connections between the nodes appearing or disappearing
over time [20] or many times as growing networks with
new nodes appear along with a batch of new edges are
considered [21]. The theoretical models usually assume the
second type, thus focus on the latter type of networks in this
work to formulate the temporal ordered clustering problem and
to provide some guarantees. The main example of network
models is the preferential attachment model, but there exists a
wide array of well-established models of such flavor [22], [23],
[24], [25], [26]. Note that some models, e.g. [27], which are
defined in terms of a fixed node set can be easily reinterpreted
as networks with growing number of nodes.

Graph models, especially the growing networks with node
additions, are expected to only represent the simple rules be-
hind the evolution of real-world networks, yet as the graph size
increases they represent many macroscopic and microscopic
characteristics of real-world networks [28], [29], [30], [31],
[32], [33]. For example, [20] mentions protein-protein inter-
action networks as one of the areas of application of temporal
networks. The main mechanism behind the evolution of PPI
networks, grounded at Ohno’s hypothesis on genome growth
and several empirical studies, is argued to be the duplication-
divergence mechanism, which is a growing network paradigm
[34], [35], [36].

We note here that growing graph models are studied in
the literature, theoretically or experimentally, from the point
of view of typical network measures: degree distribution,
existence of power-law, centrality, occurrence of small sub-
graphs (motifs) [37], [38], [39], [40]. Our inference problem
of temporal ordered clustering poses a different question from
such previous works and deduces the latent information within
the structure of an evolved dynamic graph about its evolution.

2) Clustering in static networks: Networks can be ana-
lyzed for patterns in two main ways: topological patterns and
temporal patterns. The topological clustering of nodes is a
classic problem in static networks. Its goal is to obtain a
partition of the data set into sets such that the nodes in each
set are similar or connected according to certain measures. In
general, solutions to this problem follow two main approaches:
1) define a similarity metric between node pairs, and choose
clusters in a way that maximizes similarity among the nodes
inside a cluster and minimize similarity between nodes in
different clusters; 2) identify subgraphs within the input graph
that reach a certain value of fitness measure, usually based
on subgraph density, conductance, normalized cut or sparse
cut [1].

3) Clustering in dynamic networks: Many of the clustering
techniques on static graphs have been extended to dynamic
graphs, where primarily the aim was to study the evolution
of fitness- or similarity-based clusters [41], [42], [43], [44].
However, this problem was exclusively concerned with the
(“synchronic”) connectivity or similarity of the network, even
with added a time dimension, and it should not be confused
with (“diachronic”) clustering of events we consider in this
paper. In the latter case we would like to group the events
which occurred at a similar time or, equivalently, extract some
information about the ordering of the events.

For dynamic graphs, the clustering problem has a natural
interpretation as a study of the evolution of communities in
its graph snapshots. Given a series of snapshots representing
the graph structures over time, the goal here is to track sub-
structures that are sufficiently close-knit according to some
well-established distance measures or modularity (see [45] for
an overview and comparison of static and dynamic clustering
problems). New distance measures tailored to the clustering
problem for dynamic graphs are studied in [46]. For clustering
algorithms on dynamic graphs, [44] computed clusters for
each snapshot and then evaluated matching between clusters
for every pair of subsequent snapshots. Another technique in
[42] extends spectral clustering on static networks to dynamic
networks, obtaining clusterings over time. Since for large
dynamic graphs with numerous snapshots this is infeasible,
[47], [43] proposed heuristics which update clusters based
only on the knowledge of differences (i.edge additions and
deletions) between subsequent graph snapshots.

The temporal ordered clustering or partial order inference
considered in this paper poses a very different problem in
contrast to the classical dynamic clustering formulation. The
optimization criterion for temporal ordered clustering intro-
duces a fresh look taking into account the graph model and
its actual temporal or evolutionary behavior (see Section III).
The nodes inside our clusters are indistinguishable in terms
of their arrival order due to symmetries in the input graph
and there exists a hierarchy or order among the clusters with
respect to graph evolution.

4) Semi-supervised learning: The requirement that we have
access only to a final state of the network might sound
restrictive at first, but it is indeed reasonable in cases when
the ground truth is not available e.g. for brain network. Since
in general this condition might sound too restrictive at first,
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however it is important to provide a way to include any
additional information e.g. about precedence inferred from
intermediary states of the network or from external sources.
This way, we may change our problem into semi-supervised
temporal ordered clustering.

Previous works on semi-supervised clustering methods for
data represented as vectors [48], [49] and their extensions to
graphs [50] focus mainly on using the labeled nodes to define
clusters and their centroids. However, in temporal ordered
clustering, the labeled nodes need not fully represent all the
clusters, and they are used to reduce the complexity of estima-
tion of coefficients of the associated linear programming (by
restricting the sampling distribution of importance sampling,
see Section IV-B)

5) Recovering history of dynamic networks: Node arrival
order in the DD-model has been studied in [51] and [52],
and the references therein. Most of the prior works focus on
getting the complete arrival order of nodes (total order), but
it turns out that it becomes nearly impossible due to their
symmetries [2], [3]. Instead of total order, in this work we
focus on deriving an optimal partial order of nodes of nodes
(see Section II). Our methods are general and are applicable
to a wide class of graph models, unlike our recent work [9]
and [53] where the methods were specific to the preferential
attachment model and not extendable.

Compared to previous works, we introduce the following:
• Flexibility to choose between unsupervised and semi-

supervised techniques: unuspervised when merely struc-
ture of the graph (unlabeled graph or the current node
labels do not convey any historical information), and
semi-supervised when age orderings between some node-
pairs are provided.

• Optimization problem to find theoretical limit of achiev-
ability and approximation algorithms for general growing
graph models

• Extensive experiments on various synthetic and real-
world networks (including PPI networks)

A preliminary version of this paper, containing only a
shortened discussion of the partial ordering problem and
unsupervised learning on synthetic graphs, has appeared before
in [54].

II. PROBLEM FORMULATION

Let �= be the observed undirected and unweighted graph
of = nodes with +(�=) being the set of vertices and �(�=)
being the set of edges. The graph �= is a result of evolution
over time, starting from a seed graph �=0 with =0 nodes. At a
time instant : , when a new node appears, a set of new edges
adjacent to the new node is added, and the graph �: will
evolve into �:+1. Since the change in graph structure occurs
only when a new node is added, assuming the addition of a
node as a time epoch, �= also represents graph at time epoch
=. The time epoch =0 denotes the creation of the seed graph
�=0

1.

1In the rest of the paper, we omit conditioning on the given �=0 in all the
expressions for the sake of brevity, if it is clear from the context.

Given only the snapshot of the dynamic graph �= at time =,
we usually do not know the time or order of arrivals of nodes.
Essentially, our goal is to label each node with a number 8, 1 ≤
8 ≤  , such that all the nodes labeled by 8 arrived before nodes
with labels 9 where 9 > 8. The number of labels (clusters)
 is unknown before and is a part of the optimal clustering
formulation. The arrival of a new node and the strategy it
uses to choose the existing nodes to make connections depend
on the graph generation model. We thus express the above
problem in the following way. Let �= be a graph drawn from
a dynamic random graph model G= on = vertices in which
nodes are labeled as [=] = {1, 2, . . . , =} according to their
arrival, i.e., node 9 was the 9 th node to arrive. Let �= evolve
from the seed graph �=0 . To model the lack of knowledge of
the original labels, we subject the nodes to a permutation c
drawn uniformly at random from the symmetric group on =

letters (=, and we are given the graph �= := c(�=); that is, the
nodes of �= are randomly relabeled. We also use the notation
H= to denote the random graph behind �=. Our original goal
is to infer the arrival order in �= after observing �=, i.e., to
find c−1. The permutation c−1 gives the true arrival order of
the nodes of the given graph.

Instead of putting a constraint on recovering the whole
permutation c−1 or equivalently  = = labels, we resort
to strict (irreflexive) partial orders. For a partial order f, a
relation D <f E means that node D is older than node E

according to the ordering f.

A. Relation between temporal ordered clusters and partial
order set

Every partially ordered set can be represented by a clus-
tering {C8} as follows. A strict partially ordered set can be
represented initially by a directed acyclic graph (DAG) with
nodes as the nodes in the graph �= and directed edges as given
by the partial order f: an edge from E to D exists when D <f E.
Then taking the transitive closure of this DAG will result in
the DAG of the partial order set f. Now, all the nodes with
in-degree 0 in the DAG will be part of cluster � and the set
of nodes with all the in-edges coming from nodes in � will
form cluster � −1. This process repeats until we get �1. The
number of clusters  is not defined before but found from the
DAG structure. Unlike the classical clustering, these clusters
are ordered such that C1 ≺ C2 . . . ≺ C , where the relation
C8 ≺ C9 , 8 < 9 is defined as all the nodes inside the cluster
�8 are estimated to be arrived earlier than all the nodes in the
cluster C9 , and all the nodes inside each cluster are considered
to be identical in arrival order. We note here that not all partial
orders result in a DAG that is weakly connected. If there are
multiple components in the DAG corresponding to a partial
order, each of them will give independent clustering. It might
be due to the nodes in these separate components of the DAG
are developed independently during evolution. Moreover, if
there are nodes that are not part of any comparison in the
partial order, we label them as unclassified.

In the following Section III-A, we formulate an optimization
problem for the clusters and find that the time complexity of
its solution is =5-times larger than that of the solution of the
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optimization problem of partial orders in Section III-B. Hence
in this paper, we focus only on the temporal-ordered clusters
derived from the partial order.

We define an estimator q of the temporal ordered clustering2

as a function q from the set of all labeled graphs on = vertices
to the set of all partial orders on nodes 1, . . . , =.

We consider estimators based on unsupervised and semi-
supervised learning paradigms:
• Unsupervised: In this case, the estimator does not have

access to any information of the node arrival orders. Its
results will be based only on the assumption that the graph
model fits well the real-world network under consideration.
In Section III we formulate an optimization problem for
unsupervised learning and in Section IV we provide ap-
proximate solutions of the optimization.

• Semi-supervised: In some of the real-world networks, partial
information of the order of nodes is available - for some of
the node pairs D, E, it is revealed to the estimator that node
D is arrived earlier than node E. Such node pairs are termed
as perfect pairs. Taking this information into account would
help the estimator that is initially based on fixed graph model
to adapt to the real-data. The semi-supervised estimators
introduced in Section IV learn the partial orders in the data
without violating the perfect pairs.

B. Measures for evaluating partial order

For a partial order f, let  (f) denote the number of
pairs (D, E) that are comparable under f: i.e.,  (f) =
|{(D, E) : D <f E}|, where | (f)|≤

(=
2
)
.

Density: the density of a partial order f is simply the number
of comparable pairs, normalized by the total possible number,(=

2
)
. That is, X(f) =  (f)/

(=
2
)
. Note that X(f) ∈ [0, 1]. Then

the density of a partial order estimator q is simply its minimum
possible density X(q) = min�= [X(q(�=))].
Precision: it measures the expected fraction of correct pairs
out of all pairs that are guessed by the partial order. That is

\(f) = E
[

1
 (f)

|{D, E ∈ [=]: D <f E,c−1(D) < c−1(E)}|
]
.

For an estimator q, we also denote by \(q) the quantity
E[\(q(c(G=)))]. We note here that the typical graph cluster-
ing performance measures like Silhouette index and Davies-
Bouldin index do not find useful in our set up since the dis-
tance measure in our case is difficult to capture quantitatively
and is purely based on indistinguishability due to symmetries
and arrival order of nodes.

III. SOLVING THE OPTIMIZATION PROBLEM

The precision of a given estimator q can be written in the
form of a sum over all graphs �=:

\(q) =
∑
�=

Pr[c(G=) = �=]
1

 (q(�=))

× E
[
|{D, E ∈ [=]: D <q(�=) E,c−1(D) < c−1(E)}|

���c(G=) = �=
]
.

2From now on, we use the terms node arrival order inferencing and temporal
ordered clustering interchangeably in the paper

Here c and G= are the random quantities in the conditional
expectation. We formulate the optimal estimator as the one
that gives maximum precision for a given minimum density.
For an estimator to be optimal, it is then sufficient to choose,
for each �=, a partial order q(�=) that maximizes

�Y(q) :=  (q(�=))−1

× E
[
|{D, E ∈ [=]: D <q(�=) E,c−1(D) < c−1(E)}|

���c(G=) = �=
]
.

subject to the density constraint X(q(�=)) =  (q(�=))/
(=
2
)
≥

Y, which says that we must have a certain minimum density
of comparable pairs (here, Y ∈ [0, 1] is a parameter of the
problem).

In the the following first two subsections, we formulate the
above optimization problem for two cases: when the estimator
outputs the clusters and when it outputs the partial order. Each
of these optimizations add a set of extra constraints to the
original problem.

Let

?D,E (�=) := Pr[c−1(D) < c−1(E)|c(G=) = �=] (1)

be the probability that D is arrived before E given the relabeled
graph �=. The probability ?D,E (�=) turns out to be a critical
quantity that serves as the coefficient in the linear program-
ming approximations of the optimization problems and its
estimation is explained in the last subsection of this section3.

A. Integer programming formulation for clusters

In this subsection, we restrict our optimization to linear
cluster estimators, where the clusters are arranged in a total
(linear) order.

To accomplish this optimization, we introduce, for each
vertex E, a vector ®GE = (GE,1, . . . , GE,=), where GE,8 = 1 encodes
the fact that node E is placed in cluster 8.

Then �Y can be written in terms of integer programming
(IP) formulation as∑

1≤D 6=E≤=

∑
1≤8< 9≤=

?D,E (�=)
GD,8GE, 9∑

1≤:<;≤=

∑
1≤F 6=F′≤=

GF,:GF′,;
, (2)

subject to the basic constraints4

=∑
9=1
GE, 9 = 1,∀ 9 ∈ [=] & GE, 9 ∈ {0, 1},∀E ∈ [=],∀ 9 ∈ [=].

We additionally have the following density constraint for a
given Y: ∑

1≤:<;≤=

∑
1≤F 6=F′≤=

GF,:GF′,; ≥ Y
(
=

2

)
.

Each term of the form GD,8GE, 9 becomes one only when the
node D is classified into a cluster 8 that has lower precedence
than node E’s cluster 9 (8 < 9). This corresponds to the event
D <q(�=) E with q as given by the clusters. The probability

3We drop the dependence of �= in ?D,E (�=) and % if it is clear from the
context.

4Let the nodes in �= take unique labels from the set [=] = {1, 2, . . . , =}
(the original random graph G= is assumed to be labeled from [=], with label
8 indicating 8th arrival node).
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?D,E appears because of the event c−1(D) < c−1(E) inside
the expectation in �Y . The denominator in (2) corresponds to
 (q(�=)).

That is, we have a quadratic rational integer program with
linear basic constraints and a quadratic constraint introduced
by the minimum density. We show now how to convert
our program to a linear rational integer program with linear
constraints.

We define new variables ID,8,E, 9 = GD,8GE, 9 , for D, E, 8, 9 ∈
[=]. We can then eliminate the rational part of the integer
program using the substitution

B =
©«

∑
1≤:<;≤=

1≤F 6=F′≤=

IF,:,F′,;
ª®®¬
−1

and I′D,8,E, 9 = B ID,8,E, 9 .

With the above change of variables, the domain of I′ is
restricted to {0, B}. The density constraint∑

1≤D 6=E≤=
1≤8< 9≤=

ID,8,E, 9 ≥ Y
(
=

2

)
=⇒ B ≤ 1

Y
(=
2
) .

Now we transform the integer program to a linear program by
assuming I′ takes continuous values with domain [0, 1/Y

(=
2
)
].

We call the resulting optimization as LP-clusters.

Original integer program LP approximation

max
I

∑
1≤D 6=E≤=
1≤8< 9≤=

?D,E (�=) ID,8,E, 9∑
1≤:<;≤=

1≤F 6=F′≤=

IF,:,F′,;
max
I′

∑
1≤D 6=E≤=
1≤8< 9≤=

?D,E (�=)I′D,8,E, 9

subject to subject to
• ID,8,E, 9 ∈ {0, 1} • I′

D,8,E, 9
∈ [0, 1/Y

(=
2
)
]

∀D, 8, E, 9 ∈ [=] ∀D, 8, E, 9 ∈ [=]
•

∑
1≤D 6=E≤=
1≤8< 9≤=

ID,8,E, 9 ≥ Y
(
=

2

)
•

∑
1≤D 6=E≤=
1≤8< 9≤=

I′D,8,E, 9 = 1

•
∑
8∈[=]

ID,8,D,8 = 1, ∀D ∈ [=] •
∑
8∈[=]

I′D,8,D,8 ≤ 1/Y
(
=

2

)
,

∀D ∈ [=]
• ID,8,E, 9 = IE, 9,D,8 • I′

D,8,E, 9
= I′

E, 9,D,8
∀D, 8, E, 9 ∈ [=] ∀D, 8, E, 9 ∈ [=]

•
∑
8∈[=]

ID,8,E, 9 = IE, 9,E, 9 , •
∑
8∈[=]

I′D,8,E, 9 = I′E, 9,E, 9 ,

∀D, E, 9 ∈ [=] ∀D, E, 9 ∈ [=]

The first three constraints are direct translation of the
constraints in (2), and the last two comes from the substitution
ID,8,E, 9 = GD,8GE, 9 .

Complexity analysis. The LP approximation presented above
has Θ(=4) decision variables and Θ(=4) constraints. Therefore
the complexity of solving this optimization, without taking into
account the complexity of estimating ?D,E , will be of the order
of =12 in practice (322 if 3 is the number of decision variables
and 2 is the number of constraints [55, Section 1.2.2]).

The numerical experiments of the optimization in terms of
clusters are presented later in Section VI-A. We also provide
comparisons showing the formulation in terms of partial orders
given in the next subsection computes much faster, yet outputs
estimates with precision closer to that of cluster optimization.

B. Integer programming formulation for partial orders

In this subsection, we derive the optimal partial order among
the nodes for the arrival order inference problem, extending
some results from our recent work in [9].

We now represent the optimization problem with �Y(q) as
an integer program of partial order. For an estimator q, we
define a binary variable HD,E for each ordered pair (D, E) as
HD,E = 1 when D <q(�=) E. Note that HD,E = 0 means either
D >q(�=) E or the pair (D, E) is incomparable in the partial
order q(�=).

In the following, we write the optimization in two forms:
the original integer program (left) and the linear program-
ming approximation (right). The objective functions of both
the formulations are equivalent to �Y(q). The constraints
of the optimizations correspond to domain restriction, min-
imum density, and partial order constraints – antisymmetry
and transitivity respectively. To use a linear programming
approximation, we first convert the rational integer program
into an equivalent truly integer program. With the substitution
B = 1/∑1≤D 6=E≤= HD,E , and H′D,E = BHD,E , the objective function
is rewritten as a linear function of the normalized variables.
These programs are equivalent if H′D,E ∈ {0, B}, B ≤ 1/Y

(=
2
)
.

For the LP relaxation, we assume H′D,E as
[
0, 1/Y

(=
2
) ]

. We call
the LP in this subsection as the LP-partial-order.

Original integer program LP approximation

max
H

∑
1≤D 6=E≤= ?D,E (�=)HD,E∑

1≤D 6=E≤= HD,E
max
H′

∑
1≤D 6=E≤=

?D,E (�=)H′D,E

subject to subject to

• HD,E ∈ {0, 1}, ∀D, E ∈ [=]
• H′D,E ∈ [0, 1/Y

(=
2
)
], ∀D, E ∈

[=]

•
∑

1≤D 6=E≤=
HD,E ≥ Y

(
=

2

)
•

∑
1≤D 6=E≤=

H′D,E = 1

• HD,E+HE,D ≤ 1, ∀D, E ∈ [=] • H′D,E + H′E,D ≤ 1/Y
(=
2
)
,

∀D, E ∈ [=]
• HD,E + HE,F − HD,F ≤ 1, • H′D,E + H′E,F − H′D,F ≤ 1/Y

(=
2
)
,

∀D, E, F ∈ [=] ∀D, E, F ∈ [=]

The above integer program and LP-partial-order formulation
is different from the LP-clusters in many ways. The idea of
LP-partial-order is to relax the formulation of LP-clusters by
focusing on the underlying partial order of clusters, rather
than clusters itself. This simplifies the objective function,
though it brings additional partial order constraints into the
optimization. After finding the optimal partial order, we can
derive the ordered clusters from it using the peeling technique
in Section II-A. We note here that this may not need result
in unique clusters. Many partial orders can have the same the
cluster structure, especially when the DAG corresponding to
the partial order contains multiple components.

The next lemma bounds the effect of approximating the
coefficients ?D,E on the optimal value of the integer program.

Lemma 1. Consider the integer program whose objective
function is given by

�̂Y,_(q) =
∑

1≤D<E≤= ?̂D,E (�=)HD,E∑
1≤D 6=E≤= HD,E

,
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with the same constraints as in the original integer program.
Assume ?D,E (�=) can be approximated with | ?̂D,E (�=) −
?D,E (�=)|≤ _ uniformly for all D, E. Let q∗ and q̂∗ denote
optimal points for the original and modified integer programs,
respectively. Then |�̂Y,_(q̂∗)−�Y(q∗)|≤ 3_, for arbitrary _ > 0.

Proof. We extend the proof of [9, Lemma 5.1] – it now re-
quires a weaker assumption | ?̂D,E (�=)− ?D,E (�=)|≤ _ instead
of | ?̂D,E (�=)/?D,E (�=) − 1|≤ _ in [9].

Our goal is to upper bound

|�Y(q∗) − �̂Y,_(q̂∗)|.

We can rewrite this as

|�Y(q∗) − �̂Y,_(q∗) + �̂Y,_(q∗) − �Y(q̂∗) + �Y(q̂∗) − �̂Y,_(q̂∗)|
≤ |�̂Y,_(q̂∗) − �Y(q̂∗)|+|�̂Y,_(q∗) − �Y(q∗)|

+ |�̂Y,_(q∗) − �Y(q̂∗)|

Now, the first and second differences on the right-hand side
are at most _, since

|�̂Y,_(q∗) − �Y(q∗)| ≤
∑

1≤D 6=E≤= q∗D,E | ?̂D,E (�) − ?D,E (�)|∑
1≤D 6=E≤= q∗D,E

≤ _
∑

1≤D 6=E≤= q∗D,E∑
1≤D 6=E≤= q∗D,E

= _.

The remaining difference can be estimated as follows:

|�̂Y,_(q∗) − �Y(q̂∗)| ≤ {|�̂Y,_(q̂∗) − �Y(q̂∗)|≤ _.

This inequality is a result of the fact that q̂∗ is the optimal
point for �̂Y,_(·) objective function. This shows that

|�Y(q∗) − �̂Y,_(q̂∗)|≤ 3_,

so we only incur a small additive error in the optimal precision
by estimating the coefficients. � �

Complexity analysis and advantage over the cluster opti-
mization. The LP approximation has Θ(=2) decision variables
and Θ(=3) constraints appearing in the formulation. Thus
computational complexity of the LP will be of the order
of order of =7 (without taking into account the estimation
complexity of ?D,E ), which is much less than =12 complexity
of cluster optimization in the previous subsection. Later in
Section VI-A, we provide numerical comparisons showing the
formulation in terms of partial orders computes much faster,
yet outputs estimates with precision closer to that of cluster
optimization.

C. Estimating coefficients using importance sampling

We now discuss the importance sampling approach to
estimate the coefficient ?D,E that is needed to solve the
optimization problem. The following approach to estimate
?D,E is applicable to any general graph model with Markovian
evolution (conditioned on the present state of the graph, the
new state is independent of the past state).

To estimate ?D,E , we classify dynamic graph models into
two categories. Let Γ(�=) be the set of all feasible permuta-
tions f which generates a positive probability graph f(�=)
according to the distribution of the graph generation model.

i). Graph models with equiprobable isomorphic graphs.
Here, two isomorphic graphs have same probability under
the graph model. Formally, consider a graph �

(1)
= with

P[G= = �
(1)
= ] > 0 and another graph �

(2)
= , �(2)

= = f(�(1)
= )

with f ∈ Γ(�(1)
= ), then the equiprobable condition can be

stated as P[G= = �
(1)
= ] = P[G= = �

(2)
= ]. Our previous work

in [9] focus on such a case and derives the following result.
Lemma 2 ([9, Lemma 4.1 in Supplementary Information]).
For all E, F ∈ [=] and graphs �=,

P[c−1(E) < c−1(F)|c(G=) = �=]

=
|f : f−1 ∈ (�=), f−1(E) < f−1(F)|

|Γ(�=)|
. (3)

Though the graph models with such a property are not
common, it include preferential attachment and Erdős-Renyi
models. For preferential attachment model, we show in [9]
that the estimation of right-hand side of (3) deduces to
finding the proportion of linear extensions f of a partial
order (set of node pair orderings that hold with probability
1) satisfying f−1(E) < f−1(F).

ii). Graph models with non-equiprobable isomorphic
graphs. Many of the graph models do not possess equiprob-
able ismorphic graphs property. In this work, we propose a
new estimation scheme based on importance sampling that
is applicable to such a case for any general graph model
with Markovian evolution.

We have, for ?D,E := P(c−1(D) < c−1(E)|c(G=) = �=),

?D,E =
∑

f : f−1∈Γ(�=)
f−1(D)<f−1(E)

P(c = f |c(G=) = �=)

=
∑

f : f−1∈Γ(�=)
f−1(D)<f−1(E)

P[c = f,c(G=) = �=]
P[c(G=) = �=]

=
∑

f : f−1∈Γ(�=)
f−1(D)<f−1(E)

P[G= = f−1(�=)]P[c = f]∑
f−1∈Γ(�=) P[G= = f−1(�=)]P[c = f]

=

∑
f : f−1∈Γ(�=)
f−1(D)<f−1(E)

P[G= = f−1(�=)]∑
f−1∈Γ(�=) P[G= = f−1(�=)]

, (4)

where we used the fact that P[c = f] = 1/=! since it is
independent of �=.

We now derive an estimator for ?D,E by approximating the
numerator and denominator of right-hand side in (4). The ?D,E
expression involves summing over permutations from the fea-
sible set, i.e., f−1 ∈ Γ(�=) (f−1(�=) gives a positive probable
graph by the definition of Γ(�=)). Since there are at most
=! permutations to check for feasibility, direct sampling from
Γ(�=) is impossible in many cases. However, we remark that
each permutation f−1 ∈ Γ(�=) invokes a chain structure when
the graph has a Markovian evolution, as follows. Applying f−1

to �= is essentially relabeling of nodes in �= from [=]. Then
starting from labeling a guess of the youngest node with =,
by reverse engineering the Markovian evolution of the graph,
to find the node with label B < = we need to know only the
node B + 1 and the graph �B+1. Based on this observation, to
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estimate the denominator in right-hand side of (4) we propose
a sequential importance sampling strategy in Theorem 1 that
generalizes to any localized sampling distribution (probability
to choose node B after selecting node B + 1) which meets a
certain criterion. This is directly extendable to estimating the
numerator in (4) too by putting an extra restriction to the
sampled permutation. Later Lemma 3 presents an estimator
of ?D,E using the technique derived in Theorem 1.

Let R�= ⊆ +(�=) denote the set of candidates for youngest
nodes at time =. The set R�= depends on the graph model.
For example, in case of preferential attachment model, in
which a new node attaches < edges to the existing nodes
with a probability distribution proportional to the degree of
the existing node, R�= is the set of <-degree nodes. We
consider only permutations that do not change the initial graph
�=0 labels. For instance, if �=0 has three nodes and �=
has 6 nodes, we consider the following permutations (rep-
resented in cyclic notation): (1)(2)(3)(456), (1)(2)(3)(45)(6),
(1)(2)(3)(46)(5), (1)(2)(3)(4)(56), (1)(2)(3)(4)(5)(6). Thus we
define �=0 as �=0 itself. Since we assume �=0 is known, ?D,E
expression in (4) has an additional conditioning of �=0 .

Let X(�=, I=) represent the graph in which the node I= ∈
R�= is deleted from �=. Then the graph sequence H= =
�=,H=−1 = X(�=, I=), . . . ,H=0 = �=0 forms a nonhomoge-
neous Markov chain – nonhomogeneous because the state
space {HB}B≤= changes with B and thus the transition proba-
bilities too. Similarly G=,G=−1, . . . ,G=0 also make a Markov
chain, and for a fixed permutation f, f(�=) = �=, both the
above Markov chains have same transition probabilities. Let
us also define the posterior probability of producing �= from
X(�=, I=) as

F(X(�=, I=), �=) := P[H= = �= |H=−1 = X(�=, I=)]. (5)

The following theorem characterizes our estimator. For a
Markov chain, let EG denote the expectation with starting state
G. Let GB be the set of all labeled graphs on B vertices.

Theorem 1 (Sequential importance sampling). Consider a
time-nonhomogeneous Markov chain H= = �=,H=−1 =
X(�=, I=), . . ., where I= ∈ R�= , I=−1 ∈ R�=−1 , . . . 4C2 be the
nodes removed randomly by the Markov chain and let its
transition probability matrices be {&B = [@B(� ′, � ′′)]}B≤= for
any two graphs � ′ ∈ GB and � ′′ ∈ GB−1. Then we have∑
f−1∈Γ(�=)

P[G= = f−1(�=)|�=0 ] = EH==�=

[
=0+1∏
B≤=

F(X(�B , IB), �B)
@B(�B , X(�B , IB))

]
.

Proof. Now we have the following iterative expression for the
denominator of ?D,E .

?denom
D,E (�=, �=0 ) :=

∑
f−1∈Γ(�=)

P[G= = f−1(�=)|�=0 ] (6)

=
∑

I=∈R�=

∑
f−1∈Γ(�=)

P[G= = f−1(�=),G=−1 = f−1
1 (X(�=, I=))|�=0 ],

where f1 ∈ (=−1 is the permutation f with “I= maps to ="
removed. Now we can rewrite the above expression as∑
I=∈R�=

∑
f−1∈Γ(�=)

P[G= = f−1(�=)|G=−1 = f−1
1 (X(�=, I=))]

× P[G=−1 = f−1
1 (X(�=, I=))|�=0 ].

Note that P[G= = f−1(�=)|G=−1 = f−1
1 (X(�=, I=))] for a fixed

f (thus f1) is equivalent to F(X(�=, I=), �=). Now introducing
a transition probability {&B = [@B(8, 9)]}B≤= for the Markov
chain {�B}B≤=, and using importance sampling,

?denom
D,E (�=, �=0 ) =

∑
I=∈R�=

F(X(�=, I=), �=)
@=(�=, X(�=, I=))

@=(�=, X(�=, I=))

×
∑

f−1∈Γ(X(�= ,I=))
P[G=−1 = f−1(X(�=, I=))|�=0 ].

=
∑

I=∈R�=

F(X(�=, I=), �=)
@=(�=, X(�=, I=))

@=(�=, X(�=, I=))

× ?denom
D,E (X(�=, I=), �=0 ), (7)

with ?denom
D,E (�=0 , �=0 ) = 1. Here @=(�=, X(�=, I=)) is the tran-

sition probability to jump from H= = �= to H=−1 = X(�=, I=).

Now let `(�=, �=0 ) = EH==�=

[
=0+1∏
B≤=

F(X(�B , IB), �B)
@B(�B , X(�B , IB))

]
Then we have,

`(�=, �=0 ) =
∑

I=∈R�=

F(X(�=, I=), �=)
@=(�=, X(�=, I=))

@=(�=, X(�=, I=))

× EH=−1=X(�1 ,I=)

[
=0+1∏
B≤=−1

F(X(�B , IB), �B)
@B(�B , X(�B , IB))

]
(8)

=
∑

I=∈R�=

F(X(�=, I=), �=)
@=(�=, X(�=, I=))

@=(�=, X(�=, I=))

× `(X(�=, I=), �=0 ), (9)

where (8) follows from the Markov property.
Defining the function at =0 as

F(X(�=0 , I=0 ), �=0+1)
@=0 (�=0+1, X(�=0 , I=0 ))

= 1, for any I=0

we note here that the iteration (9) of `(�=, �=0 ) is identical
to that of ?denom

D,E in (7). This completes the proof. �

Remark 1. Note that unlike @B(�B , X(�B , IB)), which is under
our control to design a Markov chain, F(X(�B , IB), �B) is a
well-defined fixed quantity (see (14)). The only constraint for
the transition probability matrices {&B}B≤= is that it should be
chosen to be in agreement with the graph evolution such that
the choices of jumps from �B to �B−1 restricts to removing
nodes from R�B , and it depends on the graph model.

pD,E estimator. Now we can form the estimator for ?D,E for
a node pair (D, E) as follows. Let ®I(:) be the vector denoting
the sampled node sequence of the :th run of the Markov
chain. It can either represent a vector notation as ®I(:) =
(I(:)
= , I

(:)
=−1, . . . , I

(:)
=0+1) or take a function form ®I(:)(B) denoting

the new label of a vertex B in �=. We propose the following
estimator and show that it has asymptotic consistency.
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Lemma 3 (Estimator and its consistency). Let the estimator
of ?D,E , for all D, E ∈ �=, formed from : samples of the
sequential importance sampling (see Theorem 1) be

?̂
(:)
D,E =

∑:
8=1 1{®I(8)(D)<®I(8)(E)}

∏=0+1
B≤=

F(X(�B , ®I(8)B ), �B)
@B(�B , X(�B , ®I(8)B ))∑:

8=1
∏=0+1
B≤=

F(X(�B , ®I(8)B ), �B)
@B(�B , X(�B , ®I(8)B ))

. (10)

Then ?̂
(:)
D,E → ?D,E a.s. as : →∞.

Proof. Using Theorem 1 and based on the observation that
the Markov sample paths in different runs are independent
and identically distributed, the numerator and denominator in
the right-hand side of (10) converge separately to that of (4)
by strong law of large numbers (in almost surely sense). Then
by invoking continuous mapping theorem, we can prove that
their ratio also converges to ?D,E almost surely. �

Theorem 1 and Lemma 3 provide us the flexibility and
convenience to sample the permutations and estimate ?D,E via
a wide-range of sampling distributions. In the next section, we
consider two such candidate distributions.

IV. APPROXIMATING OPTIMAL SOLUTION

In this section, we describe our main algorithms for node
arrival order recovery of a general graph model.

Algorithms for sampling the Markov chain. Finding the
whole set of permutations and calculating the exact ?D,E
according to (4) is of exponential complexity. With Theorem 1
and eq. (10), we can approximate ?D,E as the empirical average
of Markov chain based sample paths. We try two different
importance sampling distributions {&B}B≤=:

• local-unif-sampling with transition probabilities

@B(�B , X(�B , IB)) =
1
|R�B |

. (11)

• high-prob-sampling forms the Markov chain with

@B(�B , X(�B , IB)) =
F(X(�B , IB), �B)∑

D∈R�B F(X(�B , D), �B)
. (12)

The above transition probability corresponds to choosing the
high probability paths.

Though the high-prob-sampling looks like the right
approach to follow, as we show later in Section VI-A, it
has much slower rate of convergence than local-unif-
sampling.

Moreover both implementations differ significantly in their
computational complexity: at each step B high-prob-
sampling requires $(=2) computations – as there are $(=)
possibilities for immediate ancestor of IB in X(�B , IB) which
is needed for calculating the posterior probability F and there
are $(=) possibilities for the sum in the denominator. On the
other hand local-unif-sampling requires only $(=) –
counting |R�B | by checking all the nodes. In some graph
models (like the DD-model in Section V-A), all the nodes
in �B can be part of R�B with a positive probability, and

local-unif-sampling will essentially become uniform
sampling.

The local-unif-sampling can be further improved
with the acceptance-rejection sampling technique: at a step C,
randomly sample a node D from +(�C ) (instead of sampling
from R�C ). Then calculate the probability that the node D be
the youngest node in the graph. If this probability is positive,
we accept D as +C and if it is zero, we randomly sample again
from +(�C ).

However, note that both high-prob-sampling and
local-unif-sampling have net running times $(=3:)
and $(=2:) respectively, with : being the number of sam-
ple paths computed by our sequential importance sampling
algorithm. In practice this means that these algorithms can be
applied only to small- and medium-sized networks (up to e.g.
104 nodes), but not to large ones unless someone has access
to really large computational power.

Now we assume that ?D,E are estimated for all D and E to
propose algorithms for temporal clustering. In fact, according
to Lemma 1, we only need to have maxD,E | ?̂D,E − ?D,E |≤ _
for a small _ > 0. Thus for small ?D,E , ?̂D,E can be assumed
to be zero. We can then use LP-partial-order in Section III-B
with the estimated ?D,E as the coefficients. Due to the huge
computational complexity associated with the LP solution, we
now propose the following unsupervised and semi-supervised
approximation algorithms based on the estimates of ?D,E .

A. Unsupervised solution

sort-by-?D,E-sum algorithm. For this algorithm, we con-
struct a new complete graph with the node set same as that
of �= and edge weights as ?D,E . Let us now define a metric
?D := ∑

E∈+ ?D,E for every node D of �=. Since ?D,E denotes
the probability that node D is older than node E, ?D would
give a high score when a node D becomes the oldest node.
Our ranking is then sorted order of the ?D values.

Instead of total order, a partial order can be found by a
simple binning over ?D values: fix the bin size |� | and group
|� | nodes in the sorted ?D values into a cluster, and the process
repeats for other clusters. If |� |= 1, the algorithm will yield a
total order.

?D,E -threshold algorithm. Here, each of the estimated
?D,E ’s is compared against a threshold g. Only the node pairs
that are strictly greater than this condition are put into the
estimator output partial order. Note that if g = 0.5, we get
a total order in virtually all the relevant cases – as the only
possible tie occurs when ?D,E = ?E,D = 0.5.

B. Semi-supervised solution

Suppose we have partial true data of node arrival order
available from some external sources. Let it be ordered in
partial order as forig = {(D, E)}, in which for the pair (D, E), D
is the older than E. Let ftrain ⊂ forig be the training set and
the let the test set be ftest := forig\ftrain. Let |ftrain |= U |forig |
for some 0 < U < 1. With the knowledge of ftrain, we modify
the estimation of ?D,E as follows. The set of removable nodes
R�B at each instant B is modified to R�B\NR�B , where NR�B
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Algorithm 1 Temporal Ordered Clustering: Semi-supervised
Input: graph �=, graph model G= description, training set of partial order ftrain, number of sample paths :
Output: Clusters C1 ≺ C2 . . . ≺ C 

1: procedure TEMPORALORDEREDCLUSTERING
2: for ℓ from 1 to : do
3: for B from = down to =0 do
4: Find R�B and NR�B by (13)
5: R�B ← R�B\NR�B
6: Sample I(ℓ)B using a sampling method – local-unif-sampling (11) or high-prob-sampling (12)
7: end for
8: end for
9: Estimate ?̂(:)

D,E ,∀D, E ∈ +(�=) using (4)
10: Use algorithm sort-by-?D,E-sum or ?D,E -threshold to estimate clusters of nodes C1, C2, . . . , C 
11: return C1, C2, . . . , C 
12: end procedure

𝑢 𝑣

𝑦 𝑧

𝑤 𝑥
Fig. 3: Semi-supervised learning example DAG for ftrain =
{(D, E), (E, F), (F, G), (H, F): NR�B = {E, F, G} and R�B =
{D, H, I}.

is the set of nodes that can not be included in the removable
nodes as it would violate the partial order of ftrain. It is defined
as follows:

NR�B := {D : (D, E) ∈ ftrain, D, E ∈ +(�B)},∀= ≥ B ≥ =0.
(13)

After estimating ?D,E with the redefined R�B , we employ
sort-by-?D,E-sum algorithm or ?D,E -threshold algo-
rithms to find partial order. An example of R�B construction
is shown in Figure 3.

Algorithm 1 summarizes our semi-supervised algorithm.
The algorithm will become unsupervised when there is no
ftrain and step-5 is removed.

V. TEMPORAL ORDERED CLUSTERING FOR
DUPLICATION-DIVERGENCE MODEL

A. Duplication-divergence model (DD-model)

We consider definition of the DD-model by Pastor-Satorras
et al. [56]. Given an undirected, simple seed graph �=0 on =0
nodes and target number of nodes =, the graph �:+1 with :+1
nodes5 evolves from the �: as follows: first, a new vertex E
is added to �: . Then the following steps are carried out:
• Duplication: Select a node D from �: uniformly at random.

The node E then makes connections to N (D), the neighbor
set of D.

• Divergence: Each of the newly made connections from E to
N (D) are deleted with probability 1 − ?. Furthermore, for

5The subscript : with �: can also be interpreted as time instant :

all the nodes in �: to which E is not connected, create an
edge from it to E independently with probability A

:
.

The above process is repeated until the number of nodes in
the graph is equal to =. We denote the graph �= generated
from the DD-model with parameters ? and A , starting from
seed graph �=0 , by �= ∼ DD-model(=, ?, A, �=0 ).

The posterior probability F(X(�B , IB), �B), which is defined
in (5) and used in Theorem 1 and high-prob-sampling,
can be calculated for the DD-model as follows. For a node
IB ∈ R�B , we say a node D is its parent if D can be selected
from the graph X(�B , IB) for the duplication step when IB is
added into X(�B , IB). The probability of having the node D as
the parent of IB ∈ R�B in the DD-model is

F(X(�B , IB), D, �B)

=
1

B − 1
? |N(IB)∩N(D) |(1 − ?) |N(D)\N(IB) |( A

B − 1

) |N(IB)\N(D) | (
1 − A

B − 1

) (B−1)−|N(IB)∪N(D) |
(14)

The above expression can be inferred directly from the def-
inition of the DD-model as follows. We first pick D as a
parent node of IB with probability 1

B−1 . Then to calculate
the probabilities of edge addition events retrospectively, we
observe that edges from IB to the nodes in the N (IB) ∩ N (D)
stayed with probability ?, but edges to N (D)\N (IB) were
dismissed with probability 1 − ?. We also have to take into
account the edges between IB and vertices outside of N (D) –
each were chosen independently with probability A

B−1 and they
are exactly the edges from IB to N (IB)\N (D).

Now F(X(�B , IB), �B) = ∑
D∈P�B (IB) F(X(�B , IB), D, �B),

where P�B (IB) represents possible parents of IB in �B .
Since all permutations have positive probability in this

version of the model, we have R�B = +(�B) and Γ(�B) = B!.

B. Greedy algorithms for clustering
To form a comparison with algorithms proposed in Sec-

tion IV, we propose the following greedy unsupervised algo-
rithms for the DD-model.

sort-by-degree. The nodes are sorted by the degree and
arranged into clusters {�8}8≥1. Cluster �1 contains nodes with
the largest degree.
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peel-by-degree. The nodes with the lowest degree are
first collected and put in the highest cluster. Then they are
removed from the graph, and the nodes with the lowest degree
in the remaining graph are found and the process repeats.

sort-by-neighborhood. This algorithm will output a
partial order with all ordered pairs (D ≺ E) such that N (D)
contains N (E). This condition holds when A = 0. When A > 0,
we consider |N (E)\#(D)|≤ A as A is the average number
of extra connections a node makes apart from duplication
process. In most real-world data, we estimate A as smaller
than 1, and hence the original check is sufficient.

peel-by-neighborhood. Here, we find the set {D :
� E |N (E)\N (D)|≤ A} (as mentioned before, it is sufficient to
check N (E) ⊂ N (D) in many practical cases) and mark it as
the youngest cluster. These nodes are removed from the graph,
and the process is repeated until it hits �=0 . This algorithm
makes use of the DAG of the neighborhood relationship and
includes isolated nodes into the bins.

C. Comparison with other graph models

The node arrival order recovery problem in the DD-model
is different from that in other graph models like Erdős-Renyi
graphs and preferential attachment graphs.

First, for a fixed graph �= on = vertices, let us consider a
set of graphs Adm(�=) = {f(�=):f ∈ Γ(�=)}. It is obvious
that for the Erdős-Renyi model, any graph in Adm(�=) is
generated equally likely with a given seed graph �=0 . Such
property was also proved for the preferential attachment model
in [2]. However, this does not hold for DD-model graphs as
shown in the following example.

1 3

2 4

5
Fig. 4: Example of asymmetric graph

For the graph �(1)
= presented in Figure 4, let �=0 consists

of vertices 1, 2, 3, and let the parameters of the DD-model
be ? = 0.2 and A = 0. The P[G= = �

(1
= ] can be calculated

iteratively using (14) as 0.068. Now, consider the permutation

f =
(
1 2 3 4 5
1 2 3 5 4

)
.

Then f ∈ Γ(�1
=). Let �(2)

= = f(�(1)
= ). The P[G= = �

(2
= ] is

0.051, and conditioned on the same structure probabilities of
�

(1)
= and �(2)

= are 0.5744 and 0.4256 respectively.
Second, it is well known that both the Erdős-Renyi graphs

and preferential attachment graphs are asymmetric6 with high

6An automorphism or symmetry of a graph � is an isomorphism from a
graph � to itself. We say that � is symmetric if it has at least one nontrivial
symmetry and that � is asymmetric if the only symmetry of � is the identity
permutation.
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Fig. 5: E log|Aut(�=)|, �= ∼ DD-model(2000, ?, A,  20),
where |Aut(�=)| is the number of automorphisms in graph
�=.

probability [10], [2]. On the other hand, the graphs generated
from the DD-model for a certain range of parameters show a
significant amount of symmetry, as shown in Fig. 5. This is in
accordance with many real-world networks (see Table III for
examples).

Last, the behavior of the degree at time C of the node arrived
at an earlier time B (denoted by degC (B)) is different for all
three models. For Erdős-Renyi graph with edge probability
?, it is known that E[degC (B)] = ?(C − 1). For the preferential
attachment graphs, E[degC (B)] = Θ

(√
C/B

)
([57], Theorem 8.2).

However, for the DD-model, E[degC (B)] = Θ
(
(C/B) ? B2?−1) for

any C ≥ B [11]. Note that when B = $(1) – the case of very
old nodes – the average degree is of order C ? . For B = C, we
have E[degC (C)] = $(C2?−1) which is growing only for ? >

1/2. For example, when ? = 1 degrees of all the nodes on
average are of order $(C). Thus oldest nodes in the graph
need not have large average degrees as the graph evolves, and
algorithms based on such a heuristic are not applicable for the
DD-model. Moreover, Frieze et al. [12] has shown that degC (B)
is concentrated around the mean for B = $(1) in the sense that
for any � > 1 we observe polynomial tail:

Pr[degC (B) < � E[degC (B) log−: C]
= Pr[degC (B) > � E[degC (B) log: C] = $(C−�),

for certain fixed constant : and a constant � dependent on
�. However, this is not the case for the last vertices, since
they are copied from already existing nodes in the network,
which would explain the ineffectiveness of greedy degree-
based heuristics for ? ≤ 1/2.

VI. EXPERIMENTS

In this section, we evaluate our methods on synthetic
and real-world data sets. We made publicly available all
the code and data of this project at https://github.com/
krzysztof-turowski/duplication-divergence.

We present the following results in the coming sections.

• Synthetic networks:

https://github.com/krzysztof-turowski/duplication-divergence
https://github.com/krzysztof-turowski/duplication-divergence
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– How well the LP-partial-order performs in comparison
with the LP-clusters? (Figures 6 and 7)

– Fixing the LP-partial-order, how is the convergence of
?D,E ’s that are estimated via sequential importance sam-
pling schemes local-unif-sampling and high-
prob-sampling as to the exact ?D,E , in terms of
resulting precision? (Figure 8)

– Fixing LP-partial-order for the LP formulation and
local-unif-sampling for the importance sampling
strategy, we study the performance of unsupervised al-
gorithms in comparison with greedy strategies specific to
the DD-model. (Figure 9)

– For the semi-supervised algorithms, we show results (pre-
cision and density) for various parameter configurations
and study their influence on the performance. (Tables I
and II)

• Real-world networks: For the semi-supervised algorithms,
how the precision improves with a small change in the train-
ing size, and how does the results compare against greedy
algorithms of the DD-model? (Figure 10 and Table IV)

Maximum likelihood estimation: For deriving total order,
a natural solution will be the maximum likelihood estimator
(MLE).

arg max
f∈(=

P[G= = c−1(�=)|c−1 = f]

But we do not consider MLE explicitly here because it is
known that many networks exhibit large number of symmetries
(see Table III for some examples), and thus there will be large
number of total orders that achieve the MLE criterion with
low value of precision. In fact, our optimal formulation in
Section III already captures the MLE solutions and outputs
them if they have high precision. Moreover for general graph
models, the MLE computation would require checking all f ∈
(= which incurs Θ(=! ) computational complexity.

A. Synthetic networks

In the following results on synthetic networks, ftries denote
the number of Markov chain sample paths (for sequential
importance sampling) used for estimating ?D,E for all D, E ∈
+(�=). All the studies are performed on multiple graph real-
izations from the DD-model with specified parameters, and the
results are averaged over them. When we make a comparison
based on LP formulation, we plot precision (\) vs minimum
density Y (X ≥ Y) in accordance with the formulations in
Sections III-A and III-B.

In Figure 6, we compare the performance of the linear
programming approximations LP-cluster (Section III-A) and
LP-partial-order (Section III-B). Since clustering output from
the LP-cluster scheme induces a partial order, we use the
same measures of precision and density that are defined for
partial order for comparing performances of LP-cluster and
LP-partial-order schemes. Our experiments confirm that for the
same graph, with the same set of {?D,E ,∀D, E ∈ +(�=)}, the
performance of them are nearly identical. However, Figure 7
shows that the difference between the running time of both
the formulations is huge – the LP-clusters which finds clus-
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LP-partial-order

LP-clusters

Fig. 6: Comparison between LP-clusters and LP-partial-order
formulation: �= ∼ DD-model(= = 30, ? = 0.6, A = 1.0, �=0 =
 10) and ftries = 100, 000. Results are averaged over 100 graph
generations. Sampling method: local-unif-sampling.
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Fig. 7: Time plot for LP-partial-order vs. LP-clusters. All the
experiments were performed on 48-CPU cluster, with Intel(R)
Xeon(R) CPU E7-8857 v2 @ 3.00GHz and 256GB RAM.

ters becomes barely feasible, whereas LP-partial-order which
outputs partial order runs in a reasonable time.

Figure 8 examines the precision of LP-partial-order obtained
with approximated {?D,E ,∀D, E ∈ +(�=)} via sequential im-
portance strategies (local-unif-sampling and high-
prob-sampling) and that obtained with the {?D,E ,∀D, E ∈
+(�=)} that is calculated exactly by considering all the pos-
sible =! orderings. We consider a small size (= = 13) example
here since it becomes infeasible to compute the exact curve
for larger values of =. We observe that the convergence of
the estimated curve is highly dependent on the method of
estimation: local-unif-sampling method requires only
100 samples, but high-prob-sampling is still visibly far
away from LP optimal curve even for 1000 samples. Thus,
along with the computational reasons stated in Section IV,
we use local-unif-sampling in the subsequent experi-
ments.

In Figure 9, we compare results of the unsupervised algo-
rithms with the estimated optimal curve via local-unif-
sampling. It turns out that greedy algorithms (sort-by-
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Fig. 8: Results on synthetic networks with exact curve: �= ∼ DD-model(13, ?, 1.0, �=0 ) for ? = 0.3 (left) and 0.6 (right),
averaged over 100 graphs. �=0 is generated from Erdős-Renyi graph with =0 = 4 and ?0 = 0.6; precision \ vs minimum density
Y (X ≥ Y)
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Fig. 9: Results on synthetic networks with greedy and unsupervised learning ?D,E -based algorithms: �= ∼
DD-model(50, ?, 1.0, �=0 ) for ? = 0.3 (left) and 0.6 (right), averaged over 100 graphs. ?D,E -based algorithms use
ftries = 100,000. �=0 is generated from Erdős-Renyi model with =0 = 10 and ?0 = 0.6. The theoretical curve is estimated via
local-unif-sampling; precision \ vs minimum density Y (X ≥ Y)

degree, sort-by-neighborhood, peel-by-degree
and peel-by-neighborhood) perform reasonably well
for small ?, but their performance deteriorates for higher
values of ?. On the other hand, ?D,E -based algorithms (sort-
by-?D,E-sum and ?D,E-threshold) offer consistent, close
to the theoretical bound, behavior different values of ? (figure
shows only two ?s due to space limitations). Moreover, the
bin size |� | in sort-by-?D,E-sum and threshold g in
?D,E-threshold algorithm offer a trade-off between higher
precision and higher density. The larger the bin size or the
higher the threshold, we observe a decrease in density, but
increase in precision as we stay close to the theoretical curve.

Table I contains the results of semi-supervised learning

extensions of the ?D,E -based algorithms. A small increase
in the percentage of the training set U yields a large in-
creases in precision for all sets of parameters. Moreover, for
larger bin size in sort-by-?D,E-sum algorithm we observe
mainly only an increase in precision with U, but for ?D,E-
threshold algorithm both X and \ grow visibly with U,
especially for large g. In turn, when we fix U and increase the
bin size in sort-by-?D,E-sum algorithm, precision remains
almost same, but density decreases significantly. And if we
do the analogous procedure for ?D,E-threshold algorithm
(fix U and increase threshold), then precision grows, but in
expense of a visible fall of density. All the above conclusions
are summarized in Table II.
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? = 0.3 ? = 0.6

Algorithm U X \ X \

sort-by-?D,E-sum, |� |= 1 0.001 1.0 0.598 1.0 0.613
sort-by-?D,E-sum, |� |= 1 0.01 1.0 0.643 1.0 0.650
sort-by-?D,E-sum, |� |= 1 0.1 1.0 0.836 1.0 0.832
sort-by-?D,E-sum, |� |= 10 0.001 0.769 0.605 0.769 0.626
sort-by-?D,E-sum, |� |= 10 0.01 0.768 0.661 0.767 0.660
sort-by-?D,E-sum, |� |= 10 0.1 0.758 0.864 0.759 0.859
?D,E-threshold, g = 0.5 0.001 1.0 0.604 1.0 0.617
?D,E-threshold, g = 0.5 0.01 1.0 0.637 1.0 0.649
?D,E-threshold, g = 0.5 0.1 1.0 0.829 1.0 0.823
?D,E-threshold, g = 0.9 0.001 0.010 0.906 0.028 0.871
?D,E-threshold, g = 0.9 0.01 0.020 0.951 0.090 0.907
?D,E-threshold, g = 0.9 0.1 0.521 0.966 0.559 0.960

TABLE I: Results on synthetic networks with
semi-supervised learning ?D,E -based algorithms:
�= ∼ DD-model(50, ?, 1.0, �=0 ), averaged over 100
graphs. ?D,E -based algorithms use ftries = 100, 000. �=0 is
Erdős-Renyi graph with =0 = 10 and ?0 = 0.6.

Algorithm Fixed Free Free Free

sort-by-?D,E-sum U |� |↗ X ↘ \ ≈
sort-by-?D,E-sum |� | U↗ X ≈ \ ↗
?D,E-threshold U g ↗ X ↘ \ ↗
?D,E-threshold g U↗ X ↗ \ ↗

TABLE II: Conclusions from synthetic data: how the metrics
behave by fixing one of the parameters and keeping other free.
The symbol ≈ indicates the changes are not significant.

B. Real-world networks

We consider the following real-world networks which have
the ground truth (or an estimated knowledge) of node and edge
age arrival order available. The directed networks are treated
as undirected in our studies. The first three datasets are taken
from SNAP repository [58] and the protein-protein interaction
data is collected from the BioGRID7.
• The ArXiv network: It is a directed network with 7,464

nodes and 116,268 edges. Here the nodes are the publica-
tions in arXiv online repository of theoretical high energy
physics, and the edges are formed when a publication
cite another. In this network, many nodes share the same
arrival time and date, and hence the true arrival order of
nodes is available only in bins of count 1,457.

• The Simple English Wikipedia dynamic network: A di-
rected network with 10,000 nodes and 169,894 edges.
Nodes represent articles and an edge indicates that a
hyperlink was added. It shows the evolution of hyperlinks
between articles of the Simple English Wikipedia.

• CollegeMsg network: In this dataset of private message
sent on an online social platform at University of Cali-
fornia, Irvine, nodes represent users and an edge from D

to E indicates user D sent a private message to user E at
time C. Number of nodes is 1,899 and number of edges
is 59,835.

• Protein-protein interaction (PPI) networks We consider
the following PPI networks of three species. In each
network, the nodes represent proteins and an edge is

7https://thebiogrid.org

present if the incident proteins are found to be interacting.
The networks formed from PPI data are further cleaned
by removing self-interactions (self-loops), multiple inter-
actions (multiple edges), and interspecies (organisms) in-
teractions of proteins. Thus the considered PPI networks
only have physical and intra-species interactions
– Mus Musculus (House mouse): 6,849 nodes and 18,380

edges.
– Saccharomyces cerevisiae (Baker’s yeast): 6,152 nodes

and 531,400 edges.
– Schizosaccharomyces pombe (Fission yeast): 4,177

nodes and 58,084 edges.
Here since the ground truth of protein phylogenetic
ages (taxon ages) and orders are not available, they
are estimated as follows. It is reasonable to expect that
the same protein which appeared over different species
also appears in their common ancestor. Hence proteins
shared across many different, distant species are supposed
to be older than others. More precisely, the age of a
protein is based on a family’s appearance on a species
tree, and it is estimated via protein family databases
and ancestral history reconstruction algorithms. We use
Princeton Protein Orthology Database (PPOD) [59] along
with OrthoMCL [60] and PANTHER [61] for the protein
family database and asymmetric Wagner parsimony as
the ancestral history reconstruction algorithm. These al-
gorithms can be accessed via ProteinHistorian software
[7].

Table III shows estimated parameters of the duplication-
divergence model for the above networks using the fitting
technique from [62].

Network (�obs) log|Aut(�obs)| ?̂ Â

ArXiv 12.59 0.72 1.0
Wikipedia 1018.94 0.66 0.5
CollegeMsg 231.54 0.65 0.45
House mouse 7827.17 0.96 0.32
Baker’s yeast 266.99 0.98 0.35
Fission yeast 674.90 0.983 0.85

TABLE III: Parameters of the duplication-divergence model
estimated for the real-world networks considered in this paper.

Figures 10 and 11 show the result of semi-supervised
learning. Here U represents the proportion of all pairs that
is considered as training set, i.e., size of the training set is
U
(=
2
)
. We randomly pick U

(=
2
)

pairs and the results presented
are average over 100 different such random sets. We observe
that a small increase in U leads to a huge change in the
precision. This also happens in synthetic data and is caused
by the large structural dependency within networks, unlike
in classical machine learning where data is often assumed to
be independent. This helps us to get a near-perfect clustering
(precision close to 1) with only 1% of the labeled nodes.

Finally, the semi-supervised approach helps to obtain a
significant improvement over the greedy algorithms. Unsuper-
vised algorithms, implied from very small U in Figures 10
and 11, have precision \ ∈ [0.5, 0.6], which is only marginally
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Fig. 10: Real-world networks: results of semi-supervised learning on social networks; precision \ vs proportion of considered
node pairs U

better than random guess. However, as it is shown in Table IV,
greedy algorithms find orderings with precision ranging from
0.47 to 0.63 for significant values of the density (it’s easy to
achieve a precision of 0.78 in CollegeMsg dataset when the
density of pairs outputted is as low as 0.01) that is also close to
random guess. Our semi-supervised algorithms, with a small
change in U, significantly outperforms greedy algorithms.

VII. DISCUSSION AND FUTURE WORK

In this article we presented a framework for clustering nodes
in dynamic networks based on latent temporal information. We
provided a way to find the maximum achievable precision (as
a measure of the quality of clustering), and proposed several
algorithms that perform well and that are capable of including
some external information about the precedence of vertices in
their arrival to the network.

Further work in our proposed framework can go in several
directions. For example, one can explore various ways to speed
up the algorithms presented in this work, as even $(=2:)
time complexity for a network on = vertices with : sampled
paths turned out to be a significant obstacle for applying
them to large real-world networks. The improvement can be
accomplished, for example, by finding a good importance
sampling distribution, which will lead to faster convergence of
our algorithms. From a theoretical perspective, there remains
an interesting question of finding bounds on the convergence
speed of estimates of ?D,E (probability that node D is arrived
earlier than node E) with various importance sampling distri-
butions. One can also look into clever bookkeeping techniques
which will result in reducing the computation time of a single
path in our sequential importance sampling algorithm. Another
direction is the application of the proposed framework and
solution to other types of random network models that not only
involve the addition of vertices and edges, but also deletion of
them.

REFERENCES

[1] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
no. 1, pp. 27–64, 2007. 1, 3

[2] T. Łuczak, A. Magner, and W. Szpankowski, “Asymmetry and structural
information in preferential attachment graphs,” Random Structures and
Algorithms, pp. 1–23, 2019. 1, 2, 3, 4, 11

[3] K. Turowski, A. Magner, and W. Szpankowski, “Compression of Dy-
namic Graphs Generated by a Duplication Model,” in 56th Annual Aller-
ton Conference on Communication, Control, and Computing, Allerton
2018, Monticello, IL, USA, October 2-5, 2018, 2018, pp. 1089–1096. 1,
4

[4] M. Srivastava, O. Simakov, J. Chapman, B. Fahey, M. Gauthier,
T. Mitros, G. Richards, C. Conaco, M. Dacre, U. Hellsten et al.,
“The amphimedon queenslandica genome and the evolution of animal
complexity,” Nature, vol. 466, no. 7307, p. 720, 2010. 2

[5] T. Ideker and R. Sharan, “Protein networks in disease,” Genome re-
search, vol. 18, no. 4, pp. 644–652, 2008. 2
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