We take an information-theoretic approach to identify nonlinear feature redundancies in unsupervised learning. We define a subset of features as sufficiently-informative when the joint entropy of all the input features equals to that of the chosen subset. We argue that the rest of the features are redundant as all the accessible information about the data can be captured from sufficiently-informative features. Next, instead of directly estimating the entropy, we propose a Fourier-based characterization. For that, we develop a novel Fourier expansion on the Boolean cube incorporating correlated random variables. This generalization of the standard Fourier analysis is beyond product probability spaces. Based on our Fourier framework, we propose a measure of redundancy for features in the unsupervised settings. We then, consider a variant of this measure with a search algorithm to reduce its computational complexity as low as with being the number of samples and the number of features. Besides the theoretical justifications, we test our method on various real-world and synthetic datasets. Our numerical results demonstrate that the proposed method outperforms state-of-the-art feature selection techniques.
External Author: Wojciech Szpankowski
A fundamental obstacle in learning information from data is the presence of nonlinear redundancies and dependencies in it. To address this, we propose a Fourier-based approach to extract relevant information in the supervised setting. We first develop a novel Fourier expansion for functions of correlated binary random variables. This is a generalization of the standard Fourier expansion on the Boolean cube beyond product probability spaces. We further extend our Fourier analysis to stochastic mappings. As an important application of this analysis, we investigate learning with feature subset selection. We reformulate this problem in the Fourier domain, and introduce a computationally efficient measure for selecting features. Bridging the Bayesian error rate with the Fourier coefficients, we demonstrate that the Fourier expansion provides a powerful tool to characterize nonlinear dependencies in the features-label relation. Via theoretical analysis, we show that our proposed measure finds provably asymptotically optimal feature subsets. Lastly, we present an algorithm based on our measure and verify our findings via numerical experiments on various datasets.
In temporal ordered clustering , given a single snapshot of a dynamic network in which nodes arrive at distinct time instants, we aim at partitioning its nodes into K ordered clusters C_1≺⋯≺C_K such that for i<j , nodes in cluster C_i arrived before nodes in cluster C_j , with K being a data-driven parameter and not known upfront. Such a problem is of considerable significance in many applications ranging from tracking the expansion of fake news to mapping the spread of information. We first formulate our problem for a general dynamic graph, and propose an integer programming framework that finds the optimal clustering, represented as a strict partial order set, achieving the best precision (i.e., fraction of successfully ordered node pairs) for a fixed density (i.e., fraction of comparable node pairs). We then develop a sequential importance procedure and design unsupervised and semi-supervised algorithms to find temporal ordered clusters that efficiently approximate the optimal solution. To illustrate the techniques, we apply our methods to the vertex copying (duplication-divergence) model which exhibits some edge-case challenges in inferring the clusters as compared to other network models. Finally, we validate the performance of the proposed algorithms on synthetic and real-world networks.